Text representations and Data Frames

Reading: Matloff Chapter 11.1 (for strings), 6.1 (for factors), 5.1 (for data frames)

The character type

typeof('a')
## [1] "character"
typeof("ABC")
## [1] "character"
length('a')
## [1] 1
length("ABC")
## [1] 1
nchar('a')
## [1] 1
nchar("ABC")
## [1] 3

Creating strings

You can use either double or single quotes.

"The Leopard"
## [1] "The Leopard"
'Burt Lancaster'
## [1] "Burt Lancaster"

Displaying strings

print("The Leopard")
## [1] "The Leopard"
"The Leopard"
## [1] "The Leopard"
cat("The Leopard")
## The Leopard

Escape characters

The \ is an escape character.

It tells R to interpret whatever comes after literally instead of as a special character.

For example, if you need quotes inside your string, you need to escape the quotation character:

cat("Giuseppe Tomasi di Lampedusa's \"The Leopard\"")
## Giuseppe Tomasi di Lampedusa's "The Leopard"
cat('Giuseppe Tomasi di Lampedusa\'s "The Leopard"')
## Giuseppe Tomasi di Lampedusa's "The Leopard"

If you need a \ in your string, you need to escape it:

cat("We use the '\\' character to escape")
## We use the '\' character to escape

String Manipulation

We can't use [] or [[]] to get at the internal parts of a string because strings are atomic in R.

We need to use substr.

Syntax is substr(string, start, stop):

lancaster = "Burt Lancaster"
substr(lancaster, 1, 4)
## [1] "Burt"

substr vectorizes over the first argument (i.e. the start and stop arguments will be expanded to match the length of the first argument):

substr("Burt Lancaster", 1, 4)
## [1] "Burt"
substr("Burt Lancaster", c(1, 6), c(4, 14))
## [1] "Burt"
substr(rep("Burt Lancaster", 2), c(1, 6), c(4, 14))
## [1] "Burt"      "Lancaster"
substr(rep("Burt Lancaster", 2), 1, c(4, 14))
## [1] "Burt"           "Burt Lancaster"

We can use substr for replacement as well:

lancaster
## [1] "Burt Lancaster"
substr(lancaster, 1, 4) = "Bill"
lancaster
## [1] "Bill Lancaster"

What happens if the replacement string isn't the same length as the piece of the string you want to replace?

Combining strings

paste is the workhorse function for string combination.

Simplest way to use it:

paste(s1, s2, ..., sn, sep)

This will paste together s1, s2, up to sn, with sep in between each one.

For example:

paste("Chico", "Harpo", "Groucho", sep = ", ")
## [1] "Chico, Harpo, Groucho"

The arguments to paste can be vectors, and the function is vectorized so we get recycling:

paste(c("Chico", "Harpo", "Groucho"), "Marx", sep = " ")
## [1] "Chico Marx"   "Harpo Marx"   "Groucho Marx"
paste("Marx", c("Chico", "Harpo", "Groucho"), sep = ", ")
## [1] "Marx, Chico"   "Marx, Harpo"   "Marx, Groucho"

Final argument: collapse.

Syntax paste(vector, collapse)

Will create one string (vector of length 1, not the length of the input vector) by pasting the elements of vector together, with the argument from collapse in between them.

paste(c("Chico", "Harpo", "Grouco"), collapse = ", ")
## [1] "Chico, Harpo, Grouco"

Finaly, we can specify both sep and collapse together.

Think of this as first calling paste with collapse = NULL, then calling paste with non-null collapse on the result:

paste(c("Chico", "Harpo", "Groucho"), "Marx", sep = " ", collapse = " and ")
## [1] "Chico Marx and Harpo Marx and Groucho Marx"
## note the equivalence:
marx.brothers = paste(c("Chico", "Harpo", "Groucho"), "Marx", sep = " ", collapse = NULL)
paste(marx.brothers, collapse = " and ")
## [1] "Chico Marx and Harpo Marx and Groucho Marx"

Splitting strings

Primariy function is strsplit.

Syntax: strsplit(s, split)

Given these parameters, what do you expect the output from strsplit to look like? Which of the data structures we've seen so far can accommodate everything we need?

split.brothers = strsplit("Groucho and Harpo and Chico", "and")
typeof(split.brothers)
## [1] "list"
split.brothers
## [[1]]
## [1] "Groucho " " Harpo "  " Chico"

A slightly more realistic example:

I have some fasta files that I'm going to use as input, perform some manipulations on, and then write some output based on each one. I want the output files to have the same prefix but have the extension .txt instead of .fasta:

file.names = c("ighv_human.fasta", "ighd_mouse.fasta", "ighj_human.fasta", "ighv_mouse.fasta", "ighd_human.fasta", "ighj_mouse.fasta")
split.files = strsplit(file.names, ".", fixed = TRUE) ## fixed = TRUE has to do with regular expressions, which we'll talk about on Thursday
output.names = character(length = length(file.names))
for(i in 1:length(split.files)) {
    prefix = split.files[[i]][[1]]
    output.names[i] = paste(prefix, ".txt", sep = "")
}
output.names
## [1] "ighv_human.txt" "ighd_mouse.txt" "ighj_human.txt" "ighv_mouse.txt"
## [5] "ighd_human.txt" "ighj_mouse.txt"

Factors

Factor creation:

factor(c("a", "b", "b", "z"))
## [1] a b b z
## Levels: a b z

Factors vs. strings

state.name
##  [1] "Alabama"        "Alaska"         "Arizona"        "Arkansas"      
##  [5] "California"     "Colorado"       "Connecticut"    "Delaware"      
##  [9] "Florida"        "Georgia"        "Hawaii"         "Idaho"         
## [13] "Illinois"       "Indiana"        "Iowa"           "Kansas"        
## [17] "Kentucky"       "Louisiana"      "Maine"          "Maryland"      
## [21] "Massachusetts"  "Michigan"       "Minnesota"      "Mississippi"   
## [25] "Missouri"       "Montana"        "Nebraska"       "Nevada"        
## [29] "New Hampshire"  "New Jersey"     "New Mexico"     "New York"      
## [33] "North Carolina" "North Dakota"   "Ohio"           "Oklahoma"      
## [37] "Oregon"         "Pennsylvania"   "Rhode Island"   "South Carolina"
## [41] "South Dakota"   "Tennessee"      "Texas"          "Utah"          
## [45] "Vermont"        "Virginia"       "Washington"     "West Virginia" 
## [49] "Wisconsin"      "Wyoming"
typeof(state.name) ## typeof tells us about R's internal representation of the variable
## [1] "character"
state.name.fac = as.factor(state.name)
typeof(state.name.fac) ## typeof tells us that from R's point of view, state.name.fac is a vector of integers 
## [1] "integer"
class(state.name.fac) ## class tells us that the object is a factor
## [1] "factor"
attributes(state.name.fac)
## $levels
##  [1] "Alabama"        "Alaska"         "Arizona"        "Arkansas"      
##  [5] "California"     "Colorado"       "Connecticut"    "Delaware"      
##  [9] "Florida"        "Georgia"        "Hawaii"         "Idaho"         
## [13] "Illinois"       "Indiana"        "Iowa"           "Kansas"        
## [17] "Kentucky"       "Louisiana"      "Maine"          "Maryland"      
## [21] "Massachusetts"  "Michigan"       "Minnesota"      "Mississippi"   
## [25] "Missouri"       "Montana"        "Nebraska"       "Nevada"        
## [29] "New Hampshire"  "New Jersey"     "New Mexico"     "New York"      
## [33] "North Carolina" "North Dakota"   "Ohio"           "Oklahoma"      
## [37] "Oregon"         "Pennsylvania"   "Rhode Island"   "South Carolina"
## [41] "South Dakota"   "Tennessee"      "Texas"          "Utah"          
## [45] "Vermont"        "Virginia"       "Washington"     "West Virginia" 
## [49] "Wisconsin"      "Wyoming"       
## 
## $class
## [1] "factor"
unclass(state.name.fac)
##  [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
## [24] 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
## [47] 47 48 49 50
## attr(,"levels")
##  [1] "Alabama"        "Alaska"         "Arizona"        "Arkansas"      
##  [5] "California"     "Colorado"       "Connecticut"    "Delaware"      
##  [9] "Florida"        "Georgia"        "Hawaii"         "Idaho"         
## [13] "Illinois"       "Indiana"        "Iowa"           "Kansas"        
## [17] "Kentucky"       "Louisiana"      "Maine"          "Maryland"      
## [21] "Massachusetts"  "Michigan"       "Minnesota"      "Mississippi"   
## [25] "Missouri"       "Montana"        "Nebraska"       "Nevada"        
## [29] "New Hampshire"  "New Jersey"     "New Mexico"     "New York"      
## [33] "North Carolina" "North Dakota"   "Ohio"           "Oklahoma"      
## [37] "Oregon"         "Pennsylvania"   "Rhode Island"   "South Carolina"
## [41] "South Dakota"   "Tennessee"      "Texas"          "Utah"          
## [45] "Vermont"        "Virginia"       "Washington"     "West Virginia" 
## [49] "Wisconsin"      "Wyoming"

This representation is a bit more parsimonious in general (but not always...):

object.size(state.name)
## 3496 bytes
object.size(state.name.fac)
## 4080 bytes
object.size(rep(state.name, 1000))
## 403096 bytes
object.size(rep(state.name.fac, 1000))
## 203880 bytes

Factor manipulation

Problems we might need to deal with:

Suppose California falls off into the ocean and Puerto Rico becomes a state.

We need to change our state names to reflect the new state of affairs, and we want to replace California with Puerto Rico.

cal.index = which(state.name.fac == "California")
state.name.fac[cal.index] = "Puerto Rico"
## Warning in `[<-.factor`(`*tmp*`, cal.index, value = "Puerto Rico"): invalid
## factor level, NA generated
state.name.fac
##  [1] Alabama        Alaska         Arizona        Arkansas      
##  [5] <NA>           Colorado       Connecticut    Delaware      
##  [9] Florida        Georgia        Hawaii         Idaho         
## [13] Illinois       Indiana        Iowa           Kansas        
## [17] Kentucky       Louisiana      Maine          Maryland      
## [21] Massachusetts  Michigan       Minnesota      Mississippi   
## [25] Missouri       Montana        Nebraska       Nevada        
## [29] New Hampshire  New Jersey     New Mexico     New York      
## [33] North Carolina North Dakota   Ohio           Oklahoma      
## [37] Oregon         Pennsylvania   Rhode Island   South Carolina
## [41] South Dakota   Tennessee      Texas          Utah          
## [45] Vermont        Virginia       Washington     West Virginia 
## [49] Wisconsin      Wyoming       
## 50 Levels: Alabama Alaska Arizona Arkansas California ... Wyoming

Why does this happen?

Let's try again:

state.name.fac = factor(state.name)
levels(state.name.fac) = c(levels(state.name.fac), "Puerto Rico")
state.name.fac[cal.index] = "Puerto Rico"
state.name.fac
##  [1] Alabama        Alaska         Arizona        Arkansas      
##  [5] Puerto Rico    Colorado       Connecticut    Delaware      
##  [9] Florida        Georgia        Hawaii         Idaho         
## [13] Illinois       Indiana        Iowa           Kansas        
## [17] Kentucky       Louisiana      Maine          Maryland      
## [21] Massachusetts  Michigan       Minnesota      Mississippi   
## [25] Missouri       Montana        Nebraska       Nevada        
## [29] New Hampshire  New Jersey     New Mexico     New York      
## [33] North Carolina North Dakota   Ohio           Oklahoma      
## [37] Oregon         Pennsylvania   Rhode Island   South Carolina
## [41] South Dakota   Tennessee      Texas          Utah          
## [45] Vermont        Virginia       Washington     West Virginia 
## [49] Wisconsin      Wyoming       
## 51 Levels: Alabama Alaska Arizona Arkansas California ... Puerto Rico

Then Puerto Rico decides to change its name to The People's Republic of Puerto Rico, or The PR of PR, for its pleasing symmetry.

We need to modify our state names again. How can we do it?

pr.index = which(levels(state.name.fac) == "Puerto Rico")
levels(state.name.fac)[pr.index] = "The PR of PR"
state.name.fac
##  [1] Alabama        Alaska         Arizona        Arkansas      
##  [5] The PR of PR   Colorado       Connecticut    Delaware      
##  [9] Florida        Georgia        Hawaii         Idaho         
## [13] Illinois       Indiana        Iowa           Kansas        
## [17] Kentucky       Louisiana      Maine          Maryland      
## [21] Massachusetts  Michigan       Minnesota      Mississippi   
## [25] Missouri       Montana        Nebraska       Nevada        
## [29] New Hampshire  New Jersey     New Mexico     New York      
## [33] North Carolina North Dakota   Ohio           Oklahoma      
## [37] Oregon         Pennsylvania   Rhode Island   South Carolina
## [41] South Dakota   Tennessee      Texas          Utah          
## [45] Vermont        Virginia       Washington     West Virginia 
## [49] Wisconsin      Wyoming       
## 51 Levels: Alabama Alaska Arizona Arkansas California ... The PR of PR

We now have this extra level hanging around, and we would like to get rid of it.

What can we do?

cal.index = which(levels(state.name.fac) == "California")
levels(state.name.fac) = levels(state.name.fac)[-cal.index]
## Error in `levels<-.factor`(`*tmp*`, value = c("Alabama", "Alaska", "Arizona", : number of levels differs

This is good behavior! It prevents us from messing up our factor variables by mistake.

How do we actually do this?

droplevels(state.name.fac) ## droplevels function does what it says it does
##  [1] Alabama        Alaska         Arizona        Arkansas      
##  [5] The PR of PR   Colorado       Connecticut    Delaware      
##  [9] Florida        Georgia        Hawaii         Idaho         
## [13] Illinois       Indiana        Iowa           Kansas        
## [17] Kentucky       Louisiana      Maine          Maryland      
## [21] Massachusetts  Michigan       Minnesota      Mississippi   
## [25] Missouri       Montana        Nebraska       Nevada        
## [29] New Hampshire  New Jersey     New Mexico     New York      
## [33] North Carolina North Dakota   Ohio           Oklahoma      
## [37] Oregon         Pennsylvania   Rhode Island   South Carolina
## [41] South Dakota   Tennessee      Texas          Utah          
## [45] Vermont        Virginia       Washington     West Virginia 
## [49] Wisconsin      Wyoming       
## 50 Levels: Alabama Alaska Arizona Arkansas Colorado ... The PR of PR
factor(state.name.fac, levels = levels(state.name.fac)[-cal.index])
##  [1] Alabama        Alaska         Arizona        Arkansas      
##  [5] The PR of PR   Colorado       Connecticut    Delaware      
##  [9] Florida        Georgia        Hawaii         Idaho         
## [13] Illinois       Indiana        Iowa           Kansas        
## [17] Kentucky       Louisiana      Maine          Maryland      
## [21] Massachusetts  Michigan       Minnesota      Mississippi   
## [25] Missouri       Montana        Nebraska       Nevada        
## [29] New Hampshire  New Jersey     New Mexico     New York      
## [33] North Carolina North Dakota   Ohio           Oklahoma      
## [37] Oregon         Pennsylvania   Rhode Island   South Carolina
## [41] South Dakota   Tennessee      Texas          Utah          
## [45] Vermont        Virginia       Washington     West Virginia 
## [49] Wisconsin      Wyoming       
## 50 Levels: Alabama Alaska Arizona Arkansas Colorado ... The PR of PR
factor(state.name.fac)
##  [1] Alabama        Alaska         Arizona        Arkansas      
##  [5] The PR of PR   Colorado       Connecticut    Delaware      
##  [9] Florida        Georgia        Hawaii         Idaho         
## [13] Illinois       Indiana        Iowa           Kansas        
## [17] Kentucky       Louisiana      Maine          Maryland      
## [21] Massachusetts  Michigan       Minnesota      Mississippi   
## [25] Missouri       Montana        Nebraska       Nevada        
## [29] New Hampshire  New Jersey     New Mexico     New York      
## [33] North Carolina North Dakota   Ohio           Oklahoma      
## [37] Oregon         Pennsylvania   Rhode Island   South Carolina
## [41] South Dakota   Tennessee      Texas          Utah          
## [45] Vermont        Virginia       Washington     West Virginia 
## [49] Wisconsin      Wyoming       
## 50 Levels: Alabama Alaska Arizona Arkansas Colorado ... The PR of PR

Ordered factors

No detail here, but for reference: ordered factors exist, are created with the ordered = TRUE flag, some functions will have nicer default behavior if you tell them that ordinal variables are ordinal.

Data frames

Why do we need data frames at all?

Data frames in R are lists with some extra rules:

This gives essentially a heterogeneous analog of a matrix.

Data frame creation

kids = c("Jack", "Jill")
ages = c(12, 10)
df = data.frame(kids, ages)
df = data.frame(Kids = kids, Ages = ages)
typeof(df)
## [1] "list"
class(df)
## [1] "data.frame"

Referring to elements of a data frame

Remember that data frames are lists, wich each element of the list corresponding to one column.

This means we can use the [[]] notation to get a column:

df[[1]]
## [1] Jack Jill
## Levels: Jack Jill

We can also refer to portions of a data frame the same way we do for matrices, with the [] notation:

df[,1]
## [1] Jack Jill
## Levels: Jack Jill
df[,1,drop = FALSE]
##   Kids
## 1 Jack
## 2 Jill
df[1,"Ages"]
## [1] 12

Finally, we have a special operator, $, to get just one of the columns of the data frame:

df$Age
## [1] 12 10

Pay attention to the return type: some subsetting operations give you a data frame back, but some give you a vector.

That's all, folks