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We have learned something about scratching down batches--sets of 
similar numbers. We found more things to do--saw that more things could be 
learned about data by doing them--than we might have expected. We turn 
now to the use of simple plots, to the plotting of y against x, and find, again, 
more things to do and more gains from doing them than we might expect. 

The most quoted passage of all the Sherlock Holmes stories concerns the 
unusual behavior of the dog in the night time. Holmes called attention to its 
unusualness--Watson couldn't see what was unusual--Holmes pointed out 
that the dog did nothing. 

The moral is clear--we ought to judge each occurrence against the 
background of--or a background derived from--other "nearby" occurrences. 
We do not ordinarily think of "zero" as unusual--yet a 24-hour period when 
no one died anywhere in the world, or a winter with no snow at all in the White 
Mountains, would be recognized by each of us as strikingly unusual. 

As in the large, so in the small. Once we have plotted some data, and 
found out how it behaves generally, our next step is to look at each of its 
elements--at each "point"--and ask how it seems to deviate from the general 
behavior of all the "points". To do this it very often helps to make a new plot, 
one that focuses on such deviations--in brief, "it very often pays to plot 
residuals". 

As we have begun, so will we continue. Here, as well as later, we will be 
repeatedly engaged in splitting up data according to one version or another of 
the key relation given = fit PLUS residual. 
Here the fit is our current description --always incomplete, always 
approximate--of the overall behavior of the data. Each individual observation 
is split up into a sum of this fit and what is left over, called 

a residual. 
Residuals are our main tool in going further. They are to the data analyst what 
powerful magnifying glasses, sensitive chemical tests for bloodstains, and 
delicate listening devices are to a story-book detective. They permeate all sorts 
of data analysis and appear in many guises. 

The most conventional plots follow a simple pattern. A quantity, habitu-
ally shown on a vertical scale, which we think of as 

a response. 
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Another quantity, habitually shown on a horizontal scale, which we call 

a factor 

which is usually 
a circumstance 

and which we think of as possibly explanatory or descriptive. The data--in 
whole or part--will consist of pairs of numbers of the form 

(factor, response) 

which will be plotted as points using these scales. 
Most plots--at least in the popular press--concentrate on the fit. Too 

often, however, such plots are only to remind us that the anticipated relation-
ship is there--that, for example, the population of the U.S.A. still increases. 
As such they are usually matters of elementary exposition rather than analyses. 
They show us "the big picture" that we already knew about. (In the sense of 
Linus in the familiar comic strip, they are just "security blankets".) At other 
times, such plots "in the large" are to show us the unexpected--either an 
unsuspected relationship or an unsuspected strength or weakness of an antici-
pated relationship. For these purposes, plots "in the large" are part of data 
analysis. They tell us of investigation's successes, perhaps very effectively, but 
they still need to be supplemented by pictures of residuals--pictures that tell 
us whether there is yet more to investigate. 

For us the most useful plot will be one that might reveal the unexpected or 
the unobvious. Sometimes a plot "in the large" will do this. Usually, however, 
it is the plot of residuals that has the greatest use and the greatest impact. 

review questions 

How ought we judge occurrences or numbers? What is a "residual"? What 
is the key relation involving residuals? What is a fit? Is it final, complete, or 
exact? What is a "response"? A "factor"? A "circumstance"? How are they 
usually plotted? How is data involving one factor and one response usually 
written down? Plotted? When are plots "in the large" useful? When are they 
part of data analysis? How do we ask whether there is more to investigate? 
What kind of plot is most likely to help us? 

SA. How to plot y against x 
Plots are important. Great differences in ease of construction and great 

differences in effectiveness of use depend on apparently minor, purely technical 
procedures. The remarks in this section are intended to finish getting you over 
most of the elementary hurdles. NOW GO BACK and read the parts of section 
2C, dealing with "tracing paper", "scale values," and "plotting without graph 
paper". All this still applies here. 
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choice of ruling 

If plotting is to be easy, you want graph paper with at least three different 
thicknesses of ruling: 

<> light lines for "units". 
<> medium lines for "fives". 
<> heavy lines for "tens". 

A wide variety of graph papers can be obtained with these characteristics. 
(Some papers have extra heavy lines for "twenties". You will have to learn for 
yourself whether these help you more than they get in your way.) 

DO NOT use papers ruled in "fours" and "eights", or in "sixes" and 
"twelves" for plotting data given in ordinary (decimal) numbers. (For monthly 
data, of course, "twelves" in one direction do help.) 

If you want to plot fast, easily, and accurately, avoid "dime-store" sheets 
with only two thicknesses of ruling and, above all, avoid quadrille sheets with 
only one. (Quadrille sheets are very useful, for almost everything except 
plotting graphs.) (If you need to save money, see below.) 

choice of scale units 

When you come to plot, you must choose units. Don't try to make one 
step of ruling (light, medium, or heavy) equal to 3 units, 7 units, 0.03 units, 
0.007 units, or any such uncomfortable number. Stick to one step being 1, 2, or 
5 times a power of ten. (One square = 20,000 or one step = 0.05 are 
examples that can work out quite well.) 

You will find it hard enough to learn to be a fast and accurate plotter with 
two three-speed gear shifts (1, 2, or 5 across the graph and 1, 2, or 5 up the 
graph). 

If you need to use an abnormal scale--three units to the square, for 
example--convert your numbers into plotting units--as by dividing by 3--by 
slide rule, hand arithmetic, or what have you, BEFORE you start to plot. It will 
take less time, overall, to make a good picture. 

consequences of our purpose 

Throughout this account we shall be interested in graphs to be looked at, 
not to be used to find numbers. Our graphs are means for looking at the data, 
not stores of quantitative information. This means: 

<> we will want to keep our eyes on the points. 
<> we will usually not connect one point to the "next" one. (We are likely to 
draw in fitted lines or curves.) 
<> we will want to suppress the rulings of graph paper, at least from our 
mind's eye. 
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(> we will need only a few numbered ticks along the axes, horizontal or 
vertical, of the final picture. 
(> we will want to use symbols large enough to stand out (and if we need 
more than one kind, different kinds should be both clearly different and--
usually--almost equally noticeable). 

There cannot be too much emphasis on our need to see behavior. 

We must play down or eliminate anything that might get in the way of our 
seeing what appears to go on. 

kinds of grids 

The use of tracing paper makes it possible for any of us to really arm 
himself with an easy-graphing capability of broad scope. A tracing pad and one 
sheet of each of 20 kinds of graph paper puts us in business to do many things. 
(Actually, it usually seems worthwhile to have a reasonable number of sheets, 
perhaps in the form of a pad, of at least one or two of the most used kinds of 
graph paper. Many will wish to first plot on the graph paper and then copy on 
the tracing paper.) 

"Ordinary" graph paper frequently comes 8 small squares to the inch 
(beware; it may be lined in "4's" or "8's" which you should never, never 
use--unless what you are plotting comes in eighths of an inch, or, like stock 
market prices, in eighths of a dollar), 10 to the inch, 12 to the inch (beware, it 
may be ruled in "6's" or "12's"), 20 to the inch, and 10 to the centimeter. The 
writer likes the coarser rulings at least as well as the fine; it is up to you to 
learn your own preference. 

Beware of 12-to-the-inch rulings, since too many are ruled in "sixes" and 
"twelves"; but bear in mind that 12-to-the-inch ruled in fives and tens--like 
Codex Nos. 31,253 and 32,253, for example--is a very good base for graphs 
where the final product is a typed page. (Typewriters like 12 to the inch.) It has 
little special advantage for most other purposes, although it is quite satisfac-
tory. 

Semilogarithmic (uniform scale one way, log scale the other) and full 
logarithmic (log scales both ways) graph papers come in a variety of scales and 
patterns. To have a reasonable selection is to save time and encourage inquiry. 
One CAN always look up the logs and then plot on uniform-scale graph paper, 
but WILL one? If chapter 3 is at hand, probably yes. (We rarely get much more 
than two-decimal accuracy out of a plot on log paper, so exhibit 2 of chapter 3 
will usually do as well as special graph paper.) Otherwise? As we saw above, 
logs are often the way to make data reveal itself. 

A variety of other graph papers are useful, as we shall see later. We note 
here that paper with two square-root scales is available (Codex No. 31,298 or 
No. 32,298) and that trilinear or isometric paper--with three sets of rulings at 
120° to one another--is often quite useful. (It is available from various 
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manufacturers.) Reciprocal (one-way) paper is available both from Codex and 
from Keuffel and Esser. 

shape of plot 

Naturally enough, graph paper usually comes in the same general shape 
and size (letter size) as ruled writing pads and typing paper. Clearly it can be 
used in two ways: 

<> narrow edge at the top of the plot, or 
<> broad edge at the top. 

By analogy with the use of ruled writing pads, it is natural to make plots with 
the narrow edge up. Full use of the area then usually makes a plot that is taller 
than it is wide. 

There are some purposes for which this is a good shape. The ever-faster-
rising curve of early growth is an example.We can quite well use taller-than-
wide plots for such simple pictures, most of which tell us that we haven't yet 
made an analytically useful plot. Sometimes, indeed, such simple plots can be 
clearer when they are taller than wide, rather than wider than tall. 

Most diagnostic plots involve either a more or less definite dependence 
that bobbles around a lot, or a point spatter. Such plots are rather more often 
better made wider than tall. Wider-than-tall shapes usually make it easier for 
the eye to follow from left to right. 

Perhaps the most general guidance we can offer is that smoothly-changing 
curves can stand being taller than wide, but a wiggly curve needs to be wider 
than tall (sometimes after a smooth part has been taken out). 

When a plot is made wider than tall, convention says it should be turned in 
the direction illustrated by many plots in this chapter, even if this makes a 
down-to-up legend upside down when we first see the plot as we turn the 
pages. 

ticks and numbers along axes 

We use marks along axes for two quite different purposes: (1) to plot the 
points; (2) to look at them. Different purposes call for different techniques, and 
the graph-paper-tracing-paper combination makes separate techniques easy. If 
one begins by plotting on the graph paper, it helps to have many numbers and 
ticks on the scale. (Remember to have the horizontal scale above the plot, and 
the vertical scale to the left*--both out from under the plotting hand.) To look 
effectively at the traced result, it helps to have ONLY a few numbers and ticks. 
Exhibit 1 shows five pairs of vertical axes, one in each pair for plotting and one 
for looking. Notice the technique, in each PLOTTING scale, of: 

<> putting 4 ticks--or dots--between consecutive numbers (often useful: 
NOT to be religiously followed; sometimes no tick between, or one tick 
between, is better). 

* To the right, for southpaws. 
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<> putting a tick--or dot--for everyone or two steps of some digit in what 
is plotted (sometimes it pays to do this at every five, instead). 

(Some even standardize on dots for each one and ticks for each two.) All this is 
focused on making it as easy as possible to find where to put the point. Doing 
less than this slows down our plotting and wastes both effort and temper. 

Notice also the technique, in each LOOKING scale, of using: 

<> only four or five ticks. 
<> only two or three numbers. 

Doing more than this distracts our attention from what we ought to see. (If the 
scale is irregular, we may need more ticks and values. Scales for dates, where 
individual values like 1066, 1776, or 1929 are well remembered, often deserve 
more ticks and values.) 

exhibit 1 of chapter 5; illustrative 
Pairs of scales, showing the difference between scales for plotting (marked 
"draw") and for looking (marked "show") 

ISO 

250 /ISO 

GO 

100 100 lOO 200 1/00 1/00 \100 
50 50 

150 40 1050 IGOO 1600 

30 

50 /00 100 /000 1000 1500 

20 

50 9So 1400 1400 
10 

0 0 0 0 0 0 900 900 1300 
Draw 5how Dra"" Show Draw Show Draw Show Draw Show 
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Clearly, separating plotting from looking can be a great help. Three cheers 
for tracing paper or transparent plastic. 

review questions 

What is the minimum for well-ruled graph paper? What is optional? What 
choices of scale units are reasonable? What should we do if we need an 
unreasonable choice? Should we connect our points with lines or curves? Do 
graph-paper grids help us to plot points? To see what our points look like? 
How many ticks and numbers for looking? For plotting? Where should we put 
the scales for plotting? How do we use tracing paper? What are some 
conveniently available kinds of graph paper? Who should use graph paper with 
heavy 4's and 8's? With heavy 6's and 12's? What shapes of plot are desirable? 
Does this book follow the rule? How can we plot without graph paper? 

58. Looking at subtraction 

Undoubtedly, the form of graphical representation we have been most 
exposed to in school is one involving two variables called x and y, in which y is 
said to depend on x. 

In data analysis, a plot of y against x may help us when we know nothing 
about the logical connection from x to y--even when we do not know whether 
or not there is one--even when we know that such a connection is impossible. 

Before we can make full use of such plots, we need to understand--in 
terms both of doing and of feeling--certain things about such a plot, including: 

<> how to subtract one "curve" from another. 
<> how to find a numerical formula for a straight line drawn on graph paper. 
<> what effect subtracting different--two or more--straight lines from the 
same data points has. 
<> how to try to re-express either y or x, or both, so as to make the data 
appear more nearly straight. 
<> why graph paper--on which we plot easily--expresses the essence of 
how points represent numbers much better than the kind of picture we will 
usually want to look at--which has axes with ticks and numbers. 

When we have x alone, subtraction is simply and easily represented by 
sliding arrows along. Subtracting 3 from 5 is a matter of drawing an arrow 
starting at +3 and extending to +5, and then sliding this arrow until it starts at 
0. Its new endpoint, +2, is the result of subtraction. Exhibit 2 shows this 
example and three others that involve various combinations of minus signs. 

In dealing with data we usually deal with subtraction of y's rather than of 
x's. For a hypothetical ABC Corporation, in 1960, sales were 44 million and 
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expenses were 32 million. We can easily subtract expenses from sales to find 
profit before taxes of 12 million, as shown in exhibit 3. Again, we are sliding 
the arrow to put its base at zero. This time we have to be careful to keep it at 
1960. 

In this exhibit and the next--for clarity of what we are doing, rather than 
for clarity of result--we have used two time scales placed side by side. 
Ordinarily we would use one time scale and slide each arrow along a single 
vertical line--as for the broken arrows on the left sides of these exhibits. 

Exhibit 4 retains the pattern and shows sales, expenses, and profits for 12 
consecutive years. To avoid confusing detail, the arrows and their sliding are 
shown for only three years, 1951, 1957, and 1960. 

exhibit 2 of chapter 5: illustrative 

Four examples of subtraction 
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exhibit 3 of chapter 5: ABC Corp. 

The ABC Corporation in 1960 
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exhibit 4 of chapter 5: ABC Corp. 

Twelve years of the ABC Corporation 
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40 
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The case where we will be most concerned with graphical subtraction is 
the case where we solve the basic relation 

data = incomplete description PLUS residual 
= fit PLUS residual 

for the residual, finding 

residual = data MINUS incomplete description. 

untilting 

Exhibit 5 shows an example of this where the incomplete description is a 
straight line. Here we have slid the vertical arrows down (or up) the vertical on 
which they lie. Again we have shown only three arrows of the many possible. 

exhibit 5 of chapter 5: illustrative 

Subtraction of an incomplete description from data to form residuals 
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It is natural to think--and speak--of such a subtraction of a straight-line 
partial description as an untilting. Natural and useful. Yet such use of words 
seems likely to distort our thinking a little if we are not wary. Untilting 
suggests, at least to some of us, a rigid motion in which the final curve comes 
from the initial curve by a rigid motion--a rotation about some point. This is 
quite wrong. 

There are many ways to see this. An easy one is to look at the length of 
the curve between the two crossings of the straight line. This distance is 
obviously greater for "data" than for "residuals". Thus we do not have rigid 
motion. 

A convenient picture involves a deck of cards, on whose edges--the edges 
on one side--we have drawn both "data" and "partial description". Now let 
us: 

<> clamp the deck together and saw off its bottom edge on a slant--a slant 
that is parallel to, because it is a constant vertical distance from, the partial 
description. 
<> unclamp the deck and strike it on a table to line up its new bottom edges 
horizontally. 
<> clamp the deck again. 

The marks for "partial description" will now lie along a horizontal line, 
since they are a constant distance from the new bottom edges. If we call this 
upper line zero, the marks for "data" will now show us the "residuals". 

The sliding of the cards with respect to one another exactly corresponds to 
sliding the various vertical arrows with respect to one another. This is a proper 
mechanical picture of graphical subtraction of one y from another. It works--
rigid motion does not. 

Of course, all this works for curved fits as well as for straight ones. (At 
least if we can make a curved cut in our deck of cards.) 

review questions 

Why would we want to subtract one curve from another? A curve from 
some point? How does subtracting a straight line behave? Does it have 
anything to do with rotation? What is a mechanical model for subtracting a 
straight line? 

5C. Subtracting straight lines 

If we have taken our data, plotted it, and drawn a straight line through it, 
and now we wish to use the straight line as an incomplete description, our next 
task is to subtract the line from the data. Sometimes, as in exhibit 4, we can do 
the subtraction graphically. Often, however, this is more work than we like. 



136 /5: Plots of relationship 

finding the line 

To do the subtraction by arithmetic, we have to turn the straight line into 
numbers. The easy way to do this is to choose two points on the line--Iet us 
call them (Xl> YI) and (X2, Y2)--read off their coordinates, and say that an 
equation for the line is 

Y = YI + b(x - Xl) 

where the slope, b, of the line is given by 

b = Y2 - YI 
X2 - Xl 

Clearly, where X = Xl> we have X - Xl = 0 and the equation gives Y = YI. 
When X = X2, the second term on the righthand side of the equation is 

and we have 

as we should. 

Y2 - YI 
-'-=----..e.__=_ (X2 - ·XI) = Y2 - YI 
X2 - Xl 

To make the arithmetic of using such an equation easy, we should choose 
Xl so that the values of X - Xl are as simple as possible. To make finding the 
equation easy, we should choose X2 so that X2 - XI is a simple number. (Of 
course, we have to balance the advantages of simplicity against the advantages 
of getting well out toward the end.) There need never be great difficulty in 
turning a straight line into an equation. 

an example 

Exhibit 6 shows a plot of the population of England and Wales at every 
decade from 1801 to 1931. An eye-fitted line has been drawn in and the 
necessary simple arithmetic--shown at the lower right--performed. 

In carrying out the eye-fitting of a line and its conversion into numbers it is 
important: 

<> to eye-fit the line on a picture without excessive background--use the 
tracing paper (or transparent plastic) version WITHOUT graph paper 
underneath. 
<> to find two points through which to pass the line, put the transparent 
version back on the graph paper, and locate the points with its aid. 

It takes two different looks at a point-swarm to do all we want do. 
Exhibit 7 shows the calculation of the residuals, not only from the line of 

exhibit 6 (line 1) but also from another line (line 2). (The rest of this exhibit 
will be discussed in a moment.) 
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exhibit 6 of chapter 5: England and Wales 

Population in millions at successive censuses (1801-1931) 

Population 
(in millions) 

30 

10 
x 

1801 

x 

l( 

x 

1841 

" 
x 

18el 

x 

C.40 at 1801 
3Z.4D at 1001 
28.00 for 100 

.26 for I 
hence 

CAD +.lC(date-IBOI) 
or 

6.40 increased I!Y Z.60 
for pach decade after 1801 

1921 
) 

When, as in this example, the x-values step along in steps of constant size, 
one easy way to find the y-values is to begin at the low end and add the 
constant difference. For line 1, this means beginning with 6.40 and adding 2.60 
repeatedly. 

When the steps in x are not all the same (with the possible exception of 
short gaps), we have to do a little more arithmetic. 

subtracting different straight lines 

If we look at data, and draw what looks like a reasonable straight line 
through it, we are not likely to draw exactly the line that will serve us best. 
What are the consequences of a somewhat unsatisfactory line? 

<> what will it do to the residuals? 
<> how hard will it be to move to a better choice? 

An easy way to approach both these questions is to ask what happens if we 
subtract first one straight line from y and then a second straight line from the 
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residuals thus formed. Algebra is easier than geometry here. If we begin by 
subtracting a + bx we will form 

y - (a + bx) 

as our residual, where (x, y) is the data point and a + bx is some fit or other. 
We have just seen examples of this (in exhibit 7). If, from the residuals thus 
formed, we subtract A + Bx, we will form 

[y - (a + bx)] - (A + Bx) = y - [(a + A) + (b + B)x]. 

exhibit 7 of chapter 5: England and Wales 
The population of England and Wales, with residuals from various lines (populations 
in millions) 

A) DATA and CALCULATIONS 
supplementary 

line 1* line 2* line'" 
l!?op'n I li!!J I resid I li!!J I resid I I fitt I I resid:j: I 

1801 8.89 6.40 2.49 6. 2.89 s 1.73 1.16 
t 

11 10.16 9.00 1.16 8.5 1.66 0 1.64 .02 
P 

21 12.00 11.60 . 40 11 . 1.00 1.56 -.56 
h 

31 13.90 14.20 -.30 13.5 .40 e 1.48 -1.08 
r 

41 15.91 16.80 -.89 16. -.09 e 1.39 -1.48 

1851 17.93 19.40 -1.47 18.5 -.57 u 1.30 -1.87 
n 

61 20.07 22.00 -1.93 21. -.93 t 1.22 -2.15 

71 22.71 24.60 -1.89 23.5 -.79 1.14 -1.93 

81 25.97 27.20 -1.23 26. -.03 a 1.05 -1.08 
f 

91 29.00 29.80 -.80 28.5 .50 t .96 -.46 
e 

1901 32.53 32.40 . 13 31 . 1.53 r .88 .65 

11 36.07 35.00 1.07 33.5 2.57 e .80 1.77 
x 

21 37.89 37.60 . 29 36 . 1.89 h .71 1.18 

31 39.95 40.20 -.25 38.5 1.45 8 .62 .83 

* Line 1: 6.40 + .26 (date - 1801); Line 2: 6 + .25 (date - 1801). 
Supplementary line: 1.73 - .0085 (date - 1801). 

t One more decimal kept in additions. * These residuals are from the fit of the supplementary line to the residuals from line 2. 
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The result of two subtractions--of a + bx and A + Bx--is always the same as 
the result of a single subtraction, of 

(a + A) + (b + B)x 

--of a subtraction of the 
sum of the two lines. 

Those who wish can show the same fact geometrically. 
This fact about subtracting lines goes far toward answering our two 

questions: 

<> if we subtract one line and, on looking at the residuals, find them still 
tilted, we are free to draw a line among these residuals and subtract it 
further, thus finding new residuals. The new residuals correspond to subtract-
ing a single line--the sum of the two actually subtracted. We need not go 
back and start again. This is particularly handy when the residuals are much 
smaller numbers than are the data. 
<> if we subtract an unsatisfactory line, and discover that we have done this 
by looking at the residuals, we could always correct this by a further 
subtraction. Accordingly, our first residuals will differ from the better 
residuals by being somewhat tilted. Since slight tilts do little to hide what we 
are looking at the residuals for--evidence of further structure or of unusual 
values--it will rarely be necessary to do second subtraction (unless we 
want to publish the residuals). We can see what we need to see in the 
slightly tilted residuals. And, if we want to find the equation of the better 
line, we can draw a correction line and sum the expressions of the original 
and correction lines. 

Subtracting lines is simple and convenient in many ways. 

back to the example 

Exhibit 8 shows the residuals from line 2 of exhibit 7, plotting them 
against date. One eye-fitted line is shown. (Clearly, there could be considerable 
debate about which line to fit to this sequence of points.) This is naturally 
called a 

supplementary line 

since it is fitted to the residuals from a first fit. The result is 

1.73 - .0085(year- 1801). 

Since the residuals fitted came from the line 

6 + .25(year - 1801) 

the 2nd residuals--visible in exhibit 8 as deviations from the line, given 
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numerically in the righthand column of exhibit 7 --are residuals from the sum 
of these two lines, namely 

(1.73 + 6) + (-.0085 + .25)(year - 1801) 

or, simplified 

7.73 + .2415(year - 1801). 

Taking out first a preliminary line and then a supplementary one often, as 
in this example, helps us keep our (hand-done) arithmetic simpler. If we use 
"easy numbers" in the preliminary fit, we can often do the two fittings for less 
than the price of one. In addition--in fact a more important consideration--
we get a look at a picture of some residuals, something that can have a variety 
of advantages, and often does. 

exhibit 8 of chapter 5: England and Wales 

The residuals--from line 2 of exhibit 7--plotted against date and eye-fitted 
with a line. 

Residual 
(in million,) 

-I 

x 

1801 

x 

1841 18s1 

J. 73 at 1801 
0.88 at 1901 
- . 085 for 100 
-.00B5 fori 

hence 
1.73- .0085 (yer-ISOI) 

Or 
1.73, decrearins b:J .085 
for edch decade after 1601 

1921 > 



(5CI 50: plotting the population of the U.S.A.lexhibit 9 141 

review questions 

How does one fit a straight line to two points? How does this help us in 
eye-fitting a line? What did we choose as an example? What happens if we 
subtract two lines, one after the other, from either some points or a curve? Can 
this make our arithmetic simpler? Why? 

50. Plotting the population of the U.S.A. 

Many people would think that plotting y against x for simple data is 
something requiring little thought. If one only wishes to learn but little, it is 
true that a very little thought is enough, but if we want to learn more, we must 
think more. 

A convenient example of how thinking more lets us learn more is given by 
the population of the U.S.A. as counted by the census every ten years from 
1800 to 1950. Exhibit 9 shows the "little thought" version, in which millions of 
people are plotted against date. What can we see in this graph? 

exhibit 9 of chapter 5: U.S.A. population 

Population of the U.S.A. (in millions; linear scale) 
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For something like the first half of the period the curve is hollow upward, 
so that over this period the population was growing at a steadily increasing 
rate. In fact, it might have been growing at something like a constant percen-
tage each decade. For something like the second half of the period, the growth 
seems to approximate a straight line. Beyond this, the value for 1940 seems to 
be somewhat low. 

All this is helpful. If we had never before looked at the population of the 
United States as a function of time, we would have rightly felt that we had 
learned quite a lot from exhibit 9. But once we have come this far, must we 
stop? Let us use what we have so far learned to help us look more deeply into 
the growth of the U.S.A.'s population. 

In the present instance this is easy to do. What do we have as bases for 
further steps? Two things come in sight in exhibit 9: 

¢ the early years were years of accelerated growth, possibly at a constant 
percent per year. 
¢ in the later years, the population grew by about the same number of 
people each decade. 

We can check up on these appearances and, more importantly, try to use them 
to go further. 

To check up on constant-percent growth, the easy thing is to look up the 
logs of the population sizes, and then plot them against date. (If we didn't 
expect to go further, we could just plot the raw values on semilogarithmic 
graph paper instead.) Exhibit 10 shows the result of making such a plot. The 
earlier part of the plot now looks quite straight, even if we put our eye close to 
the paper so that we can look right along this hypothetical line. This looks very 
much as if constant percentage growth per decade is a good description of 
U.S.A. population growth in the early 1800's. Let us keep this appearance in 
mind, and plan to come back to it. 

the later decades 

Before going further with the early decades, however, we shall turn to the 
apparent linearity of population growth seen in the original graph, exhibit 9, 
for the later decades. Exhibit 11 shows the result of drawing in a comparison 
line. To find an equation for this line, note that in 1870 the line has a height of 
about 35--35 million people--and in 1950 it has a height of somewhat less 
than 150, say 147. the line through (1870, 35) and (1950, 147) has slope 

147 - 35 = 112 = 1.4 
1950 - 1870 80 

and thus the equation is 
y = 35 + 1.4(x - 1870) 

This calculation is made by simple steps in the form of writing down words and 
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numbers in the lower right of the exhibit. We recommend such a form (in 
general with "at" a value of x rather than "in" a date) whenever we eye-fit a 
line. 

This line follows the data quite well, leaving us with a confirmed feeling 
about both approximate straightness and the dip in 1940. Need we stop here? 
Surely not. The straight line is an incomplete description of how the data 
behaves in later years. One of the great arts of data analysis consists of 
subtracting out incomplete descriptions and examining the residuals that are 
left. Let us do just this. 

coming to details 

Exhibit 12 shows the residuals from the line of exhibit 11, for the period 
from 1800 to 1950. (For example, at 1880 the census population is 50.2 
millions and the fit is 35 + 1.4(10) = 49, so that the residual is +1.2 millions.) 
The detailed behavior of the population in the later half of this period is now 
fairly well revealed. The earlier half of the period is, however, telling us little. 
(Especially since the comparison line 

35 + l.4(date - 1870) 

gives rather large residuals before 1840, making the comparison in earlier 
years unlikely to be helpful.) If we gave up looking at the early half, and 

exhibit 10 of chapter 5: U.S.A. population 

Population of the U.S.A. (in millions; logarithmic scale) 
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exhibit 11 of chapter 5: U.S.A. population 

Population of the U.S.A. (linear scale with comparison line) 
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exhibit 12 of chapter 5: U.S.A. population 

Population of the U.S.A. (residuals = deviations from the specified straight line) 
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focused on the later half, we could put the data under a very much more 
powerful microscope. Why not do just this? 

Exhibit 13 shows the same values as the righthand side of exhibit 12 but at 
15 times the vertical scale. We can now see that the 1940 population was about 
five million less than would fit smoothly into the adjacent values. (Why do you 
think this happened?) And more, for we can now see that 1920 was a couple of 
millions low also (unless 1930 is thought to be unduly high). 

Our magnifying glass is now working at full capacity, at least until we 
identify some further partial description and arrange to subtract it out also. To 
learn more about the later years of U.S.A. population growth, we would need 
either to get year-by-year estimates or to study the mechanisms that are 
involved. 

the earlier details 

So much for the later years--what of the earlier ones? We left unfinished 
business when we said that the lefthand side of exhibit 10 seemed quite 
straight. We can attack this logarithmic straightness in the early years just as 
we attacked the linear straightness in the later ones. 

exhibit 13 of chapter 5: U.S.A. population 

Later population of the U.S.A. (expanded deviations from the specified straight 
line) 
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Exhibit 14 shows the result of drawing a straight line on exhibit 10. It is 
encouraging enough for us to hasten to the residuals, shown in exhibit 15. (In 
1880, a population of 50.2 millions gives a log of 7.70, while the fit is 
6.75 + .012(80) = 7.71, so that the residual is -0.01. More decimals were 
used in calculating the points for exhibit 15.) As we ought to have expected, 
the residuals prove useful in the early years but of very dubious value in the 
later ones. We can again afford to use the magnifying glass on the relatively flat 
section, as is done in exhibit 16. 

Exhibit 16, once we realize that ±0.01 in log is about ±2.3% in size, gives 
us a quite delicate view of U.S.A. population growth during the nineteenth 
century. After 1860, population growth was not as fast as before. Moreover, 
1800 appears to have been additionally depressed by 3 or 4 per cent. Why? 
Again, we have gone as far with our microscope as seems reasonable without 
further inputs. 

Experts believe many of the detailed fluctuations now so clear to us are due 
to variations in completeness of the census, rather than to changes in popula-
tion growth. Clearly, the data cannot contradict the experts. The fluctuations 
are in the numbers, whatever their source. It is worthwhile to find them, 
whether they tell us about the growth of U.S. population or the deficiencies of 
U.S. censuses. 

exhibit 14 of chapter 5: U.S.A. population 
Population of the U.S.A. (logarithmic scale with comparison line) 
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exhibit 15 of chapter 5: U.S.A. population 
Population of the U.S.A. (deviations from logarithmic straight line) 
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exhibit 16 of chapter 5: U.S.A. population 
Earlier population of the U.S.A. (expanded deviations from given logarithmic 
line) 
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If we had to choose a set of pictures to summarize U.S.A. population 
growth as completely as we now can, we would probably choose to show all 
four of the following: 

<> exhibits 14 and 11, to show the general patterns of growth. 
<> exhibits 16 and 13, to show local behavior. 

Together, these four would be responsive to the request: Make useful plots of 
U.S. population against date. (If we were population specialists, we would 
know about logistic functions and be able to fit a single incomplete description 
all the way from 1800 to 1950. This would simplify the plotting of a single 
graph of residuals, and would probably allow us to summarize the situation in 
two plots, one showing the fit and the other the residuals.) 

What are the lessons to be learned from this example? Not merely that 
thought can help us see deeper. We have seen specific examples of very general 
principles, including these: 

<> choosing scales to make behavior roughly linear always allows us to see 
local or idiosyncratic behavior much more clearly. 
<> subtracting incomplete descriptions to make behavior roughly ftat always 
allows us to expand the vertical scale and look harder at almost any kind of 
remaining behavior. 

Whatever the data, we can try to gain by straightening or by ftattening. 
When we succeed in doing one or both, we almost always see more 
clearly what is going on. 

review questions 
Can we plot without thinking? How much will we learn? What can we see 

from exhibit 9? How can we use what we see? What does exhibit 11 tell us to 
do next (go forward as far as you can)? Did we do it? Where? What does 
exhibit 14 tell us to do next (go forward as far as you can)? Did we do it? 
Where? Which pictures would we choose to "tell all" about the U.S. popula-
tion? Why? What are two important lessons to be learned from this example? 

SE. Plotting the ratio of births to deaths 
The County and City Data Book of the U.S. Bureau of the Census 

contains much varied information. In particular, the 1962 edition gives for each 
state the number of live births for 1959, the number of deaths for 1959, and 
the density of population for 1960. One who believed in the "wide open 
spaces" might feel that the ratio of births to deaths would appear to be 
influenced by the density of population, at least if the South and the Atlantic 
coast states were set aside. A plot of the ratio of births to deaths against 

1 
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exhibit 17 of chapter 5: births and deaths 

Births/deaths and population density 
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population density for the remaining states appears as in exhibit 17. About all 
we can say from this plot is that the point spatter seems crudely L-shaped. The 
use of a linear scale for population per square mile has squeezed so many of 
the states up against the vertical axis that we can't be sure what is going on. If 
we are to see what, if anything, is going on, we must adjust the left-to-right 
scale so that the states are less jammed together. 

Exhibit 18 shows the result of using a log scale for population density. We 
now see that the three states with unusually high ratios of births to deaths have 
low, but not very low densities, and do not appear to be typical of very 
low-density states. Looking only at the other states, there may be a faint 
tendency for a higher ratio of births to deaths to go with lower population 
density. (By setting aside the three states, we could double the vertical scale for 
the rest, putting this tendency under a slightly stronger microscope. Doing this 
teaches us almost nothing new, as the reader may verify.) 

another try 

If we are to give up on population density, what next? The three unusual 
states (and their birth/death ratios) were: New Mexico (4.95), Utah (4.46), and 
Arizona (3.83). Looking again in the County and City Data Book, we discover 
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exhibit 18 of chapter 5: births and deaths 

Births/deaths and population density by states (density on logarithmic scale) 
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exhibit 19 of chapter 5: births and death 

Births/deaths and median age by state 
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that all three have young populations, for instance, as measured by median age. 
Thus it is natural to plot births/deaths against median age. 

Exhibit 19 shows the result. Clearly, median age does a much better job of 
appearing to explain the ratio of births to deaths than did population density, 
though the apparent dependence is, of course, not perfect. If we are to go 
further, we will need to find and subtract out some partial description of this 
apparent dependence. 

When we "put eye to paper" and look along the point spatter in exhibit 
19, we seem to see a definite tendency to curvature (hollow above). If we could 
eliminate this, we could reasonably compare the individual points with a 
straight line. How might we approach such a simpler partial description? 

One thing to try is changing the down-to-up scale. It is easy to see that 
using squares to fix this scale would make curvature worse, so we may as well 
try going in the opposite direction by using logs, a choice which is attractive 
because of the more symmetric way it treats births and deaths. Notice how the 
identities 

(
births) log deaths == log births - log deaths 

. (deaths) == - (log deaths - log bIrths) == - log -. -
bIrths 

exhibit this symmetry. 
Exhibit 20 shows the result, complete with a convenient comparison line. 

The point spatter is now much more nearly straight. When we plot the 
corresponding residuals against median age and identify the more extreme 
states, we find the results shown in exhibit 21. 

going to the map 

The two states with notably high residuals are adjacent to one another on 
the map. The four states with middle median age and notably low residuals also 
touch one another. Clearly, we need to see the residuals on a map. 

Exhibit 22 shows the residuals spread across a map of the United States. 
The roughly regular structure of these residuals is rather easily seen--adjacent 
states are clearly more often similar than are distant ones. (Might the some-
what surprisingly positive residual for Illinois be due to the unusual size of 
Chicago?) To go further here requires either: 

<> more careful allowance for the age of the population, or 
<> more knowledge about the mechanisms affecting birth and death rates in 
general. (Would state-by-state information on economic conditions help?) 

Indeed, both of these are likely to be needed! 
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exhibit 20 of chapter 5: births and deaths 

Births/deaths (logarithmic scale) and median age by state 
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In this example, we have again seen the same main points as in the pre-
vious one: 

<> changing scales to make dependences roughly linear usually helps. 
<> flattening by subtraction makes it much easier to see what is going on at 
more subtle levels. 

The fact that our dependences were approximate rather than exact did not 
alter these main points at all. 

Approximate dependence did, however, bring in one new aspect, as we 
saw in exhibits 17 and 18: 

<> the usefulness of changing scales to reduce confusion caused by crowding. 

In both examples, it is clear that we never expect the data to be ON the 
line--only that it might, if we are lucky, be NEAR the line. Once we put the 
first example under the microscope, what we saw is not intrinsically different 
from the other example. If we had contracted out the 1850 census to two 

exhibit 22 of chapter 5: births and deaths 
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different contractors, we would have gotten two different numbers for the 
population of the U.S.A. The potential values of the U.S.A. population--
those we might reasonably have found--do not lie ON a curve; they merely lie 
QUITE NEAR one. We have happened not to buy more than one census 
value at a time. This makes the first example LOOK a little different, but will 
not keep us, in the next chapter, from interchanging the axes used for date and 
population. Once we face the uncertainties of "what the numbers might have 
been," almost all data is at best "just NEAR a line or curve". 

review questions 

Where did we get the data for the example of this section? What did our 
first try teach us? Why did it pay to use a log scale for population density? 
What did we try next? Why? How well did it work? Why did we try a log scale 
for births/deaths? What two exhibits combine to tell the story (no map yet)? 
Why did we go to a map? How well did it work? 

SF. Untilting defines "tilt" 

We are now well aware of how much we can gain by flattening our picture, 
because this lets us expand its vertical scale. It is well to have things straight 
before flattening them; we can then "blow up" the picture even more, but 
flattening of even unstraightened pictures can help too. 

We want a procedure that flattens the data out, whether or not it is 
straight. Here "flattening" must refer to the general run of the data, and not to 
its detailed behavior. Something that looks like a plausible set of residuals from 
a straight line is "flattened", though it may not be flat. 

Exhibit 23 shows a rather extreme example of curvature, and exhibit 24 
the results of "flattening" exhibit 23. Clearly, exhibit 24 is far from being flat, 
so "flattening" is a poor term. Equally, it is poor use of words to talk about 
"the slope" of exhibit 23, since there is a very small slope toward the left of the 
plot and a very large slope to the right. 

Tilt is a short word, and conveys an appropriate feeling. We shall say that 
exhibit 24 is 

untilted, 

and that the slope of the line whose subtraction converts exhibit 23 into exhibit 
24--thus clearing away an important part of what is going on so that we can 
see better what remains--is the 

tilt 

of exhibit 23. 
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exhibit 23 of chapter 5: illustrative 
A tilted set of data 

)( 
)( 

)( 
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Thus, we take the question "How much is y tilted against x?" to mean: 
"What value of b leaves y - bx apparently untilted?" Equally, we shall take 
the b thus found as our assessment of tilt, and the values of y - bx as what we 
have been able to do about freeing y of tilt against x. 

There can be a variety of different - - often only slightly different, usually 
not very much different--definitions of "apparently untilted". For each such 
definition there is a--comparably slightly different--value of b and thus both 
an assessed value for the tilt and a set of apparently untilted values. These 
differ--from definition to definition--by only comparably slight amounts. 

The existence of such alternatives--and the need to choose between 
them--usually bothers us not at all. 

In the great majority of cases, our concern with tilt is like the woodsman's 
concern with bushes and fallen trees on a trail he plans to use: 

<> we may be concerned to know that there appears to be some tilt (though 
we may have known that there would be a tilt in this particular direction 
long before we collected the data). 
<> we may even want to know how much tilt there seems to be. 
<> we are almost certain, whatever else, to want to clear the tilt ont of our 
way. 

We have already, in specific instances, cleared our way by using an 
eye-judged tilt to flatten our graphs. We frequently need to do something 
similar in fixing numbers for future analysis. Especially because we are going to 
use any tilt we assess in such a way, we will meet our needs quite well enough if 
we do a reasonably good job of assessing our tilt. (We need not worry as to in 
what way, if any, our assessment might be best possible--or even whether 
anyone can define "best possible" sensibly.) 

review questions 

What is a tilt? Why use a special word? What is it to be untilted? How do 
we define tilt? Are there many definitions, or few, or only one definition of 
"untilted"? Do we need a "best possible" tilt? Can you define a "best 
possible" tilt? 

SH. How far have we come? 

In this chapter we have met plots of y against x. Perhaps we have even 
come to know them a little. 

The state of our progress is not measured by the specific techniques we 
have seen or understood--though that kind of progress is essential. Rather, 
our progress is measured by our acceptance of such propositions as these: 
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1. Graphs are friendly. 

2. Arithmetic often exists to make graphs possible. 

3. Graphs force us to note the unexpected; nothing could be more important. 

4. Different graphs show us quite different aspects of the same data. 

5. There is no more reason to expect one graph to "tell all" than to expect 
one number to do the same. 

6. "Plotting y against r' involves significant choices--how we express one or 
both variables can be crucial. 

7. The first step in penetrating plotting is to straighten out the dependence or 
point scatter as much as reasonable. 

8. Plotting y2, -Jy, log y, -II Y or the like instead of y is one plausible step to 
take in search of straightness. 

9. Plotting -Ji, log x, -l/x or the like instead of x is another. 

10. Once the plot is straightened, we can usually gain much by flattening it, 
usually by plotting residuals (with regard to the partial description implied 
by the straight line we may not have quite drawn in yet). 

11. When plotting point scatters, we may need to be careful about how we 
express x and y in order to avoid concealment by crowding. 

In particular, we have learned--or been reminded--how to: 

<> understand about subtracting one curve from another. 
<> use two points to find an equation for a straight line. 

Our two examples differed in one way. The years of census are fixed by 
law, and at each a population is measured. It is rather easy to try to think of 
the points as having been selected from a curve with one population at each 
possible date. Births/deaths, on the other hand, whether compared with popula-
tion density or with median age of population, provides a much more symmet-
ric situation. The boundaries of states are fixed by law, and for each state two 
things happen, an x and a y. There is no possibility of assuming that all the 
data are ON a curve; the most we can hope is that the data are NEAR a line or 
curve. 

5P. Additional problems 

See exhibits 25, 26, 27, 28, 29, 30, 31, 32, 33. 
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exhibit 25 of chapter 5: data and problems 

Data for the 15 smallest counties of 3 states (from 1962 County and City Data 
Book) 

A) SOUTH CAROLINA 

Population (1960) I Local Gov't (1957)1 

% less % less 
than %at per than % budget Total 
5yrs least sq. $3000 for budget 

(*) IName I I Total I schoolt 65 mile income education ($1000's) 

2424 McCormick 8,629 28.2 8.8 23 59.8 62.0 566 
2130 Allendale 11,362 34.1 7.9 27 60.1 63.1 1082 
2051 Jasper 12,237 37.1 7.5 19 60.2 79.7 1082 
2050 Calhoun 12,256 26.1 7.9 33 68.2 76.6 659 
1852 Saluda 14,554 17.0 9.7 33 50.6 68.9 656 

1753 Edgefield 15,735 23.1 8.0 33 55.3 70.1 785 
1720 Bamberg 16,274 26.6 8.3 41 58.5 63.1 1340 
1622 Hampton 17,425 31.8 7.2 31 58.0 57.8 1312 
1608 Barnwell 17,659 23.2 7.4 32 47.5 82.9 1565 
1405 Fairfield 20.713 30.8 7.8 30 54.2 56.8 1596 

1356 Abbeville 21,417 23.0 8.7 42 42.1 56.4 1717 
1339 Lee 21,832 31.7 6.4 53 68.6 75.8 1671 
1211 Dorchester 24,383 23.1 6.6 43 49.6 67.9 1684 
1092 Colleton 27,816 29.3 7.5 27 57.9 46.7 3090 
1066 Marlboro 28,529 29.6 6.8 59 58.3 63.4 1948 

(Whole state) ((34,262)) (20.3) (6.3) (79) (39.5) (63.4) 

State has 46 counties. 

B) GEORGIA 

3077 Echols 1,876 28.0 8.5 4 55.6 59.5 122 
3051 Quitman 2,432 34.8 9.3 14 70.0 79.5 205 
3028 Glascoch 2,672 35.6 56.4 19 61.1 67.9 252 
2979 Webster 3,247 34.5 8.7 17 71.2 73.3 225 
2978 Schley 3,256 23.0 10.3 20 67.4 69.7 221 

2970 Taliaferro 3,370 27.9 13.4 17 68.5 48.8 391 
2950 Dawson 3,590 22.4 8.6 17 64.7 71.3 293 
2934 Long 3,874 22.7 7.5 10 60.1 52.0 408 
2875 Towns 4,538 11.3 10.2 27 63.7 33.4 724 
2674 Baker 4,543 33.2 8.9 15 74.1 56.4 622 

2873 Clay 4,551 26.8 10.5 20 66.6 59.2 417 
2832 Lanier 5,097 30.1 7.5 31 57.4 64.5 686 
2810 Charlton 5,313 26.5 6.2 7 44.0 49.1 703 
2808 Heard 5,333 22.7 10.7 18 56.4 57.1 652 
2805 Wheeler 5,342 29.4 9.5 18 63.7 54.4 418 

(Whole state) ((12,038)) (17.6) (7.4) (68) (35.6) (45.0) 

State has 159 counties. .. 
j 
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exhibit 25 of chapter 5 (continued) 

C) ALABAMA 
2201 Coosa 10,726 18.4 10.7 18 51.5 39.5 1174 
2179 Cleburne 10,911 21.5 9.4 19 52.4 48.2 1088 
2034 Clay 12,400 14.4 13.0 21 54.0 48.3 1347 
1945 Bullock 13,462 32.7 11.7 22 69.4 42.8 1727 
1934 Greene 13,600 38.0 9.8 21 74.0 57.9 1514 

1876 Lamar 14,271 14.7 11.0 24 51.4 37.5 2507 
1870 Bibb 14,357 22.7 9.6 23 54.4 54.7 1405 
1828 Winston 14,858 17.3 9.8 24 53.8 55.7 1072 
1824 Crenshaw 14,909 23.9 11.2 24 69.5 51.4 1332 
1796 Henry 15,286 27.8 9.0 27 63.8 56.0 1313 
1794 Washington 15,372 23.3 7.8 14 51.7 54.5 1353 
1790 Lowndes 15,417 37.2 9.2 22 72.1 55.4 1243 
1729 Fayette 16,148 16.9 10.8 26 54.7 43.0 1425 
1715 Cherokee 16,303 16.6 8.9 27 49.1 53.7 1498 
1628 Perry 17,358 28.7 10.5 24 69.2 49.4 1689 
(Whole state) ((25,738)) (16.3) (8.0) (64) (39.1) (45.8) 

State has 67 counties. 

* National rank by population. 
t Of those 25 0 rover. 
( ) Median. 

P) PROBLEMS 

25a) Panels A to C contain selected information about the 15 smallest counties in 
South Carolina, Alabama, and Georgia. Plot 

y = % with less than five years schooling 

against 

x = % with less than $3000 income 

for at least two states. Continue the analysis. Comment. 

S) SOURCE 
1962 County and City Data Book. 
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exhibit 26 of chapter 5: data and problems 
Some problems 

26a) The following data was obtained in preparing a standard curve for the 
determination of formaldehyde by the addition of chromatropic acid and 
concentrated sulphuric acid and the reading of the consequent purple color 
on a Beckman Model DU Spectrophotometer at 570 mIL. 

I Amount of CH 20 Used I I Optical Density I 
0.1 
0.3 
0.5 
0.6 
0.7 
0.9 

0.086 
0.269 
0.446 
0.538 
0.626 
0.782 

Analyze graphically, using at least two graphs. Comment. 
(Bennett & Franklin, p. 216; from Roberts.) 

26b) The relation between the amount of {3-erythrodine dissolved in water and 
the turbidity of the solution--as read on a colorimeter--is not quite as 
simple. Some data gives: 

I Concentration (in mg/ml) I I Colorimeter reading I 
40 
50 
60 
70 
80 
90 

69 
175 
272 
335 
390 
415 

Analyze graphically. Comment. (Bennett & Franklin, p. 217, from Wois-
lawskL) 

26c) Find two different collections of (x, y) points that interest you, and make 
useful plots. 

SI SOURCE 
See exhibit 27. 
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exhibit 27 of chapter 5: data and problem 

Carbon content of 36 clays measured directly and estimated indirectly 

A) DATA 
IClay#1 I Direct measurement I I Indirect estimate I 

1 1.53 2.46 
2 0.87 1.54 
3 0.28 0.70 
4 0.27 -0.40 
5 3.07 4.82 
6 0.25 0.30 
7 0.25 0.64 
8 0.29 0.78 
9 0.12 0.12 

10 1.50 2.36 
11 1.31 2.14 
12 0.31 0.08 
13 0.14 -0.01 
14 2.98 4.53 
15 6.84 9.94 
16 2.15 3.68 
17 1.35 1.84 
18 0.40 0.97 
19 4.18 6.14 
20 0.22 0.52 
21 0.38 0.40 
22 0.24 0.46 
23 1.79 2.80 
24 0.58 2.09 
25 6.55 9.68 
26 2.54 4.08 
27 1.43 2.80 
28 2.74 3.93 
29 6.08 8.22 
30 0.75 0.28 
31 0.16 0.35 
32 5.06 7.49 
33 0.86 1.41 
34 0.16 -0.50 
35 11.43 15.80 
36 0.19 0.18 ... 
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exhibit 27 of chapter 5 (continued) 

P) PROBLEM 

27a) The amount of carbon in a clay can be measured directly by heating the clay 
until all the carbon dompounds are burned, collecting the carbon dioxide 
thus formed, and measuring its amount. The amount of carbon can be 
estimated by combining the amounts of its constituents in a suitable 
standard way. The results of such measurements on 36 clays from South 
Devonshire, England, are given in exhibit 27. Analyze graphically. 
Comment. 

S) SOURCE 
C. A. Bennett and N. L. Franklin 1954, Statistical Analysis in Chemistry and the Chemical 
Industry. John Wiley, New York. Table 6.3 on page 218. 

exhibit 28 of chapter 5: data and problems 

Percentage Democratic in 12 presidential elections for 24 Northeastern and Central 
States (percentage Democratic of major party vote) 

A) DATA 

1920 1924 1928 1932 1936 1940 1944 1948 1952 1956 1960 1964 

Colorado 37.7 27.8 34.4 57.0 61.9 48.7 46.6 52.7 39.3 39.5 45.1 61.6 
Connecticut 34.5 30.9 45.9 49.4 57.8 53.6 52.7 49.2 44.1 36.3 53.7 67.9 
Delaware 43.0 38.9 33.9 48.8 54.9 54.8 54.6 49.4 48.1 44.7 50.8 61.1 

Illinois 27.3 28.4 42.6 56.8 59.2 51.2 51.7 50.4 45.0 40.4 50.1 59.5 
Indiana 42.3 41.2 39.9 56.0 57.5 49.3 47.1 49.6 41.4 39.9 44.8 56.2 
Iowa 26.4 23.0 37.8 59.1 56.0 47.8 47.7 51.4 35.8 40.8 43.3 62.0 

Kansas 33.4 27.7 27.3 54.8 53.9 42.7 39.4 45.4 30.7 34.3 39.3 54.6 
Maine 30.2 23.3 31.1 43.6 42.8 48.8 47.5 42.7 33.8 29.1 43.0 68.8 
Maryland 43.3 47.7 42.6 63.1 62.7 58.8 51.9 49.3 44.2 40.0 53.6 65.5 

Massachusetts 28.9 28.5 50.5 52.1 55.1 53.4 52.9 55.9 45.6 40.5 60.4 76.5 
Michigan 23.4 14.8 29.1 54.1 59.2 49.8 50.5 49.1 44.2 44.2 51.0 66.8 
Minnesota 21.6 11.7 41.4 62.3 66.6 51.9 52.8 58.9 44.4 46.2 50.7 63.9 

Nebraska 32.6 38.5 36.4 64.1 58.4 42.8 41.4 45.8 30.8 34.5 37.9 52.6 
New Hampshire 39.7 36.7 41.2 49.3 50.9 53.2 52.1 47.1 39.1 33.9 46.6 63.9 
New Jersey 29.6 30.6 40.0 51.0 60.1 51.8 50.7 47.7 42.5 34.6 50.4 66.0 .. 
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exhibit 28 of chapter 5 (continued) 

New York 29.5 34.3 48.8 56.7 60.2 51.8 52.5 49.5 44.0 38.7 52.6 68.7 
North Dakota 18.9 12.7 44.8 71.3 69.2 44.7 45.8 45.4 28.6 38.2 44.5 58.1 
Ohio 39.8 28.9 34.7 51.5 60.8 52.2 49.8 50.1 43.2 38.9 46.7 62.9 

Pennsylvania 29.2 22.6 34.2 47.1 58.2 53.5 51.4 48.0 47.0 43.4 51.2 65.2 
Rhode Island 33.9 37.9 50.3 56.0 56.8 56.8 58.7 58.2 49.1 41.7 63.6 80.9 
South Dakota 24.5 21.2 39.4 64.9 56.0 42.6 41.7 47.6 30.7 41.6 41.8 55.6 

Vermont 23.5 16.7 33.0 41.6 43.4 45.1 42.9 37.5 28.3 27.8 41.4 66.3 
West Virginia 43.9 47.1 41.3 55.1 60.7 57.1 54.9 57.6 51.9 45.9 52.7 67.9 
Wisconsin 18.5 17.9 45.3 67.0 67.8 50.9 49.1 52.3 38.8 38.1 48.1 62.2 

P) PROBLEMS 

Panel A gives the % Democratic vote in each of 24 northeastern and central states 
for 12 presidential elections, 1920 to 1964. Plot the following: 
28a) 1964 against 1956 
28b) 1960 against 1920 
28c) 1952 against 1932 
28d) Anyone against any other that you think will have a close relationship. 

exhibit 29 of chapter 5: data and problems 

More problems 
29a) Determination of ethylene chlorohydrin. (264, 270) translates as: "With 26.4 

milligrams of ethylene chlorohydrin present, 27.0 milligrams were found". 
Data-sets (6): (264, 270), (595, 594), (1173, 1183), (1777, 1780), (2355, 2370), 
(3578,3576). SOURCE: K. Uhrig 1946. Determination of ethylene chlorohyd-
rin. Industrial and Engineering Chemistry, Analytical Edition 18: 369 only. 
Table 1 on page 369. PROBLEM: Choose a plot that is likely to be revealing 
by thinking hard. Explain the reasons for your choice. Make the plot. 

29b) Polarographic behavior of ions containing vanadium. (94, 35) translates as: 
"For a concentration of vanadite ion of 0.094 millimoles per liter, the anodic 
diffusion constant in microamperes was 0.35 microamperes". Data-sets (8): 
(94,35), (278, 98), (508, 178), (880,309), (1548, 563), (1840, 696), (352, 1285), 
(505, 1813). (Last point: 5.05 millimoles/liter, 18.13 microamperes.) 
SOURCE: J. J. Lingane 1945, "Polarographic characteristics of vanadium in 
its various oxidation states," J. Amer. Chem. Soc. 67: 182-188. Table I on 
page 186. PROBLEM: Make useful plots of diffusion current against vanadite 
concentration. ... 
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exhibit 29 of chapter 5 (continued) 
29c) Amount of desired product in a chemical reaction after different reaction 

times and under different circumstances. (1; 32, 54; 87, 159, 226) translates 
as: "In run 1, the amount of desired product in moles per liter was 0.032 
after 80 minutes, 0.054 after 160 minutes, 0.087 after 320, 0.159 after 640, 
and 0.226 after 1280 minutes." Data-sets (16 runs under 16 different sets of 
conditions): (1; 32, 54; 87, 159,226), (2; 147,234; 343,342,203), (3; 48, 108; 
225,346,420), (4; 232,390; 556,634,416), (5; 37,38; 172,200,239), (6; 179, 
283; 405, 342, 216), (7; 86, 133; 259,398,508), (8; 309, 514; 722,764,389), 
(9; 74, 99; 200,309,249), (10; 253,343; 391,284,75)' (11; 133,271; 430, 580, 
494), (12; 508,756; 842, 570,115), (13; 96, 158; 276,339,230), (14; 308,444; 
467, 249, 29), (15; 228, 372; 579, 691, 539), (16; 626, 880; 895, 434, 58). 
SOURCE: G. E. P. Box and W. G. Hunter 1962, "A useful method for 
model-building," Technometrics 4: 301-318. Table 1 on page 304. PROB-
LEM: Make useful plots of concentration at 640 minutes against concentra-
tion at 160 minutes. 

29d) Make useful plots for one or more other pairs of reaction times. (Data-sets in 
problem (29c) above) 

exhibit 30 of chapter 5: data and problems 

Vet more problems 
30a) Analysis of samples for chrysanthenic acid. (0, 23) translates as: "When 0 

micrograms of synthetic racemic chrysanthenic acid were added, the col-
orimeter scale reading was 23". Data-sets (13): (0, 23), (5, 32), (10, 40), 
(20,54), (40,86), (60, 118), (80, 146), (100, 179)' (120, 2121. (140, 2401. (160. 
272), (180, 300), (200, 330). SOURCE: A. A. Schreiber and D. B. McClellan 
1954. Estimation of microquantities of pyrethroids. Analytical Chemistry 26: 
604-607. Table I on page 605. PROBLEM: Make useful plots of colorimeter 
reading against amount of chrysanthenic acid. 

30b) Residual strength of 8-oz. cotton duck attacked by 4 different kinds of 
fungus. (3; 97,105; 103,101) translates as: "After 3 hours of incubation, the 
strengths--referred to initial strength = 100--of the sample exposed to 
Thielaria was 97, that exposed to Humicola was 105, for Chaetomium was 
103, for Myrothecium was 101." Data-sets (24): (3; 97, 105; 103,101), (6; 98, 
106; 101, 105), (9; 95, 107; 99, 95), (12; 96, 105; 95, 95), (15; 97, 106; 90, 
100), (18; 98, 102; 91,97), (21; 97, 101; 78,98), (24; 97,90; 74,93)' (27; 90, 
81; 71,82), (30; 96, 78; 71, 76), (33; 89, 73; 65,67), (36; 88,69; 58,64), (39; 
89, 63; 53, 59), (42; 86, 59; 47, 54), (45; 82, 55; 44, 50), (48; 79, 53; 44, 42), 
(51; 73,52; 42,41), (54; 73,41; 40,40), (57; 73,42; 40,39), (60; 68,41; 39, 
35), (63; 59, 36; 38, 37), (66; 57, 37; 37, 33), (69; 57, 31; 35, 34), (72; 55, 34; 
36, 31). SOURCE: E. Abrams 1950, "Microbiological deterioration of cellu-
lose during the first 72 hours of attack," Textile Research J. 20: 71-86. Table 
2 on page 75. PROBLEM: Plot helpful curves for loss of strength from at 
least two kinds of fungus. ... 

J 
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exhibit 30 of chapter 5 (continued) 
30c) Rapid analysis for caffeine. (257, 131) translates as: "For a caffeine concen-

tration of 0.257 milligrams in 100 milliliters, the average optical density was 
0.131." Data-sets (20): (257, 131), (498,262), (506, 265), (514, 263), (747,384), 
(760,393)' (770,396)' (996, 512), (1013, 518)' (1027, 523)' (1245,633), (1266, 
643), (1284, 650), (1494, 760), (1519, 768), (1541, 775), (1798, 903), (2054, 
1040), (2311, 1160), (2568,1290). SOURCE: N. H. Ishler, T. P. Finucaine, and 
E. Borker 1948, "Rapid spectrophotographic determination of caffeine," 
Analytical Chemistry 20:1162-1166. Table 1 on page 1162. PROBLEM: Make 
useful plots of optical density against caffeine concentration. 

exhibit 31 of chapter 5: data and problems 

Still more problems 
31a) Survival of automobiles and trucks in use by a public utility. (Oh, 990) 

translates as: "After 112 year, 0.990 of all vehicles were still in service." 
Data-sets (8): (Oh, 990), (1 h, 972), (2h, 944), (3h, 895), (4h, 784), (5h, 679), (6h, 
593), (7h, 497). SOURCE: S. A. Krane 1963, "Analysis of survival data by 
regression techniques," Technometrics 5: 161-174. Table on page 168. His 
source: H. A Cowles, Jr., 1957. Prediction of mortality characteristics of 
industrial property groups. Ph.D. Thesis, Iowa State University. PROBLEM: 
Make helpful plots of fraction surviving against age. 

31 b) Heat and entropy contents of a sodium silicate. (400, 3080, 885) translates 
as: "The increases from 'room temperature' (298.16°K) to an absolute 
temperature of 4000K were 3,080 calories per mole for the heat content of 
Na2Si03 and 8.85 calories/degree/mole for its entropy content." 
(17): (400,3080,885), (500,6300,1604), (600,9650,2214), (700, 13190,2760), 
(800, 16910, 3256), (900, 20730, 3708), (1000, 24700, 4124), (1100, 28770, 
4511), (1200, 32940, 4874), (1300,37210,5216), (1361,39870,5416), (1361, 
52340,6332), (1400, 54010, 6453), (1500, 58390, 6748), (1600,62570,7024), 
(1700, 66850, 7284), (1800, 71130, 7528). (The last point, at 1800oK, gives a 
heat content change of 71,130 calories/mole and an entropy content change 
of 75.28 calories/degree/mole.) SOURCE: B. F. Naylor 1945, "High-
temperature heat contents of sodium metasilicate and sodium disilicate," J. 
Amer. Chem. Soc. 67: 466-467. Table II on page 467. PROBLEM: Make 
helpful plots of the increase in heat content against temperature. 

31c)' For Naylor's data (immediately al:.ove) make helpful plots of increase in 
entropy content against temperature. 
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exhibit 32 of chapter 5: data and problems 
And yet more 

32a) Equilibrium splitting of plutonium tribromide by water (gases at high tem-
perature). (911, 153) translates as' "For an absolute temperature of 911°K, the 
observed equilibrium constant was 0.0153/atmosphere." Data-sets (11): 
(911, 153), (914, 156), (919, 149), (920, 163), (882, 246), (876, 282), (875, 247), 
(883, 243), (815, 704), (817, 502), (816, 692). SOURCE: I. Shift and N. R. 
Davidson 1949. Equilibrium in the vapor-phase hydrolysis of plutonium 
tribromide. Paper 6.24, at pages 831-840 of The Transuranium Elements, 
edited by Seaborg, Katz, and Manning. National Nuclear Energy Series 
IV-14B. McGraw Hill. Table 2 on page 835. PROBLEM: Make useful plots of 
equilibrium constant against temperature. Which three of the 11 data-sets 
do you think the authors rejected? 

32b) Sales of Swiss bond issues since World War II. (46, 527) translates as: "In 
1946, total sales of Swiss bonds--governmental and private--were 527 
million francs". Data-sets (23): (46, 527), (47, 276). (48, 472), (49, 342). (50, 
174), (51,434), (52,333), (53,249), (54, 242), (55,492), (56, 613), (57, 1148), 
(58, 827), (59, 686), (60, 890), (61, 1023), (62, 1124), (63, 2091), (64, 2503), (65, 
2523), (66, 2292), (67, 2446), (68, 2648). SOURCE: Swiss Statistical Abstract, 
issued by the Swiss Credit Bank, November 1969. (Title also in French and 
German.) Table on page 46. PROBLEM: Make useful plots based on the data 
from 1950 to 1968. 

32c) Comparison of two ways of measuring the water content of samples of the 
sea bed. (0 to 3; 76, 76) translates as: "For a sample from 0 to 3 inches 
below the surface of the sea level, measurement of % water by drying in an 
oven gave 76%, measurement by analyzing for chloride--and using the 
known concentration of chloride in deep sea water--gave 76%". Data-sets 
(14): (0 to 3; 76,76), (3 to 6; 68,72). (6 to 9; 69,69), (9 to 12; 67,67). (12 to 
15; 60,64), (15 to 18; 62,62), (18 to 21; 60,60), (21 to 24; 58,59), (24 to 27; 
57, 57), (27 to 30; 55, 56), (30 to 33; 55, 55), (33 to 36; 55, 55), (36 to 39; 53, 
54), (39 to 42; 54, 54). SOURCE: L. J. Anderson 1948, "Conductometric 
titration of chloride in sea water and marine sediments," Analytical 
Chemistry 20: 618-619. Table II on page 619. PROE3 ... LEM: Find differences 
between water by chloride and water by oven. Make a stem-and-Ieaf display 
of these differences. Comment on the appearance of this display. Find and 
plot residuals from a straight-line fit of water content against depth, sepa-
rately for each method of finding water content. What do you conclude 
about the two methods of measuring water? 
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exhibit 33 of chapter 5: data and problems 
Median ages of urban and rural populations and estimated colonial population 

Al MEDIAN AGE, URBAN and RURAL POPULATIONS--at U.S. Censuses 

I Year I 
1950 

40 
30 
20 
10 

1900 
1890 

80 
70 
60 
50 
40 
30 
20 
10 

1800 
1790 

Median 
age I 
30.4 
29.5 
27.1 
26.1 
24.9 
23.8 
22.9 
21.6 
20.6 
20.2 
19.5 
17.9 
17.2 
16.5 
15.9 
15.7 
15.9 

Urban 
I population I 
88,927,464 
74,923,702 
68,954,823 
54,157,973 
41,998,932 
30,159,921 
22,106,265 
14,129,735 
9,902,361 
6,216,518 
3,543,716 
1,845,055 
1,127,247 

693,255 
525,459 
322,371 
201,655 

Median age = A90 Median age of white males 

Rural 
I population I 
61,769,897 
57,245,573 
53,830,223 
51,552,647 
49,973,334 
45,834,654 
40,841,449 
36,026,048 
28,656,010 
25,226,803 
19,648,160 
15,224,398 
11,738,773 
8,945,198 
6,714,422 
4,986,112 
3,727,559 

Urban population = A195 Population of "urban territory" 
Rural population = A206 Population of "rural territory" 

BI ESTIMATED POPULATION OF AMERICAN COLONIES 

I Year I 
1780 

70 
60 
50 
40 
30 
20 
10 

1700 
1690 

80 
70 
60 
50 
40 

1630 

Estimated 
I population I 

2,780,369 
2,148,076 
1,593,625 
1,170,760 

905,563 
629,445 
466,185 
331,711 
250,888 
216,372 
151,507 
111,935 
75,058 
50,368 
26.634 

4,646 
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exhibit 33 of chapter 5 (continued) 

p) PROBLEMS 

33a) Analyze the median ages of panel A carefully. 
33b/c) Analyze the urban/rural populations of panel A carefully. 

33d) Take logs of the populations in panel B, and compare them with the 
extension of the fit given in text for 1790 to 1860. 

33e) Fit the data of panel B, re-expressing it if necessary. 

8) SOURCES 
Historical Statistics of the U.S. Colonial times to 1957. Washington 1960. 
IPanel A entries are from series A90, A 195, A206 as indicated. 
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6 

We are now sure that we want to first straighten out and then flatten out 
plots. Straightening out is important--in the language of the opening of 
Chapter 4, a "big deal"--we want to learn to do it as easily as we reasonably 
can. This chapter is devoted to techniques and examples. 

The sort of re-expression that concerns us is--as we have said--almost 
entirely re-expression of amounts, including large counts. (Here, counts that 
are never smaller than 3 are surely "large", and others may be.) These are the 
kinds of numbers where it is natural to take powers, roots, and logs. 

In dealing with them, we will want to be sure that our origins are 
reasonably chosen. It is only for amounts measured from reasonable origins 
that we are likely to get full value from changing to a power, a root, or a 
logarithm. 

Powers and roots of amounts are again amounts. Logs of amounts are 
balances. For these purposes--as for so many others--large counts are merely 
a special kind of amount. Accordingly, (nonzero) powers and roots of large 
counts are amounts, while logs of large counts are balances. 

In thinking about our problems of re-expression--which need not be the 
same sort of thing as analyzing the data involved--we need to think about 
whether x --or y --varies much or little. So long as we deal with amounts, the 
natural way to make comparisons is by ratios--including percents. Thus we 
are interested in such facts as: 

largest x = 3 
smallest x ' 

All x are within ± 50% of a middle value, 
or 

largest x = 1 1 
smallest x ., 

largest x = smallest x plus 10%. 

When we work in logs, we are concerned with balances, not amounts, and the 
natural way of expressing spread is either in log units or--occasionally--by 
the ratios into which differences in log units can be re-expressed. 
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review questions 

What will we try to do .in this chapter? What sort of re-expression 
concerns us? Need we bother about choice of origin? What is important about 
how much x--or y--varies? When it is an amount or count? When it is a 
balance? 

6A. Looking at three points 

We have seen various illustrations of straightening out data. So far, either 
these have come from simple rational considerations, or else they have come--
"out of the air" --with little apparent reason for the choice. How are we to 
behave when we have some other kind of data? Do we have to try all possible 
combinations of an expression of y with an expression of x on the whole data? 
Or can we save most of the effort this would involve? 

The purpose of these changes of expression is to straighten out the data. If 
the data looks curved, in some overall way, we can make this obvious by 
picking out three representative points. For the early growth of the U.S.A. 
population, for example, we could choose the points corresponding to 1800, 
1850, and 1890. These three points are: 

(1800, 5.3) 
(1850, 23.2) 
(1890,62.9) 

A simple way to see that three points do not lie on a single straight line is 
to find the slopes of the straight lines through the first pair and the second pair, 
respectively; this gives: 

23.2 - 5.3 17.9 
1850 - 1800 = 50 = 0.36 

and 

62.9 - 23.2 39.7 
1890 - 1850 = 40 = 0.99 

which are quite different. The second slope is greater, so the curve is hollow 
upward. (Draw yourself a sketch.) 

If any pair of choices of expression is going to straighten out the early 
portion of the U.S.A. population curve, these same choices will have to do a 
reasonably good job in straightening out these three points. We can save a lot 
of effort by screening our pairs of expressions on these three points. We will 
then need to try only the one best--or perhaps the few best--on the whole 
data. 
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We can often ease the task a little by choosing the spacing of the three 
points to simplify matters further. Had we chosen 

(1810, 7.2) 
(1850,23.2) 
(1890, 62.9) 

we could have compared 
16.0 = 23.2 - 7.2 

with 
39.7 = 62.9 - 23.2 

since both changes in x are the same. (1850 - 1810 = 40 = 1890 - 1850). 
Sometimes we can go almost this far by picking points so that changes in x 

have a simple ratio--1 to 2, 1 to 3, 3 to 2, etc.--instead of being equal. 
Even trying all reasonably possible pairs of expressions on three points is 

an effort. Can we save some of this by looking into the direction in which 
changing an expression shifts curvature? 

review questions 
What relation ought three selected points have to all the available points? 

How do we ask three points about curvature? How can we make asking easier? 

68. Re-expressing y alone 

Exhibit 19 of chapter 3 shows various expressions of y plotted against y. 
We see at once that the higher curves are hollow upward, while the lower 
curves are hollow downward. 

To say that a curve is hollow npward means that if we take three points on 
the curve, the middle point is below the line joining the other two. Similarly, 
hollow downward means that the middle point is above the line joining the 
other two. Since we are trying to get a middle point onto the line joining the 
outer two, these are just the sort of facts that matter to us. 

We can say more about the simple ladder of ways of expression, which 
includes 

y 

JY 
log Y 

1 
ly 

j 
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than we just have. We stated one special case of the following: 

<> if one expression is straight, those above it are hollow upward, those 
below it are hollow downward. 

Exhibit 19 of chapter 3 has already shown us that this is true when y is straight. 
Exhibit 20 of chapter 3 shows us that this is true when log y is straight. The 
appearance of both those exhibits makes it plausible that the statement is true 
if any expression of the simple ladder is straight. (The doubting reader should 
try to use the following two statements to construct a general proof.) 

<> if our three points are hollow UPward, we look further DOWN the 
ladder for straightness. 
<> if our three points are hollow DOWNward, we look further UP the 
ladder for straightness. 

These must be true. Consider the first: If a new expression is to be straight, and 
our present expression is hollow upward, the present expression has to be 
higher up the ladder than the new expression. To find the new expression, we 
must move down the ladder from the present expression. 

So far as re-expressing y goes, the rule is simple: 

<> move on the ladder as the bulging side of the curve points. 

u.s. population again 

Applying this to the early U.S. population--since we have seen that the 
curve is hollow upward--moves us down the ladder. Let us try this, trying 
-l/y first. 

Turning to exhibit 6 of chapter 3 we can find 

-1/5.3 = -0.188 
-1/23.2 = -0.043 
-1/62.9 = -0.016 
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The three points and the two slopes are now 

(1800, -0.188) 
(1850, -0.043) 
(1890, -0.016) 

-0.043 - (-0.188) 0.145 
1850 - 1800 = 5() = 0.0029 

-0.016 - (-0.043) 0.027 
1890 - 1850 = 40 = 0.0007 

The slope for the first pair of points is now four times that for the second pair. 
When we used y, that for the second was three times that for the first. We 
would like equal slopes, so it is natural to try next about halfway from y to 
-l/y. Thus we are led to try log y. Turning to exhibit 3 of chapter 3, we see 
that 

log 5.3 = 0.72 
log 23.2 = 1.37 
log 62.9 = 1.80 

so that the three points and two slopes are 

(1800, 0.72) 
(1850, 1.37) 
(1890, 1.80) 

1.37 - 0.72 0.65 
1850 - 1800 = -sol = 0.013 

1.80 - 1.37 0.43 
1890 - 1850 = 40 = 0.011 

Now the slopes agree with each other rather well. We should now go ahead--
calculating log y and plotting x and log y for either many more or all of the 
points. Exhibits 7 and 10 of chapter 5 have already shown us how well this 
choice works. 

fitting lines to three points 

Once we have our three points fairly well on a line, we may as well fit a 
line to them. The three points just fixed offer a reasonable example. 

To fit a line to three reasonably-spaced points, we usually do well to fit a 
slope to the two endpoints, and then take the mean of the three adjusted 



(68) 6C: re-expressing x alone 175 

values to find the constant. For (1800, 0.72), (1850, 1.37), (1890, 1.80), this 
leads to 

1.80 - 0.72 = 1.08 = 0.012 
1890 - 1800 90 

and since it seems easy to work with 

x = date - 1800 

we form the three values of 

namely 

y - .012(date - 1800) 

0.72 - .012(0) = 0.72 
1.37 - .012(50) = 0.77 
1.80 - .012(90) = 0.72 

for which the mean is 0.74 to two decimals. (The agreement of the two O.72's is 
an important check on our arithmetic.) Thus our fit is 

Population(log of millions) = 0.74 + 0.012(date - 1800) 

Three points can take us a long way. If they are well chosen, they can do 
very well for us. 

review questions 

How do three points indicate hollow upward? Hollow downward? In 
which direction are expressions hollow that fall above (on the ladder of ways of 
expression) a straight expression? Those below? How do these rules help us in 
straightening the growth of the u.s. population? How do we fit a line to three 
(reasonably spaced) points? Why did we not use the median of the three 
adjusted values? Should we be surprised that 0.012 (in the 3-point fit) falls 
between 0.011 and 0.013 (for the two pairs of points)? 

6C. Re-expressing x alone 

We now know how to be guided in choosing a better expression for y. 
What if we wish to leave y alone and re-express x? 

If we flip our picture over, interchanging the y- and x-axes, we convert 
one problem into the other. (We have to look through the back side of the 
paper after the flip, but a straight line stays a straight line.) Since it is now the 
same problem, all the same arguments apply. 
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This means that if the curve bulges toward large x and we are to 
re-express x, we ought to move x up the ladder, while if the curve bulges 
toward small x, we should move x down the ladder. 

back to the population of the U.S. 

Exhibit 1 shows three points from the population curve after the inter-
change of x and y. We see that the bulge is toward larger x (upward on this 
interchanged plot), so if we are to re-express x we would have to move upward 
on the x ladder. 

Should we try re-expressing x in this situation? No, because we can see 
that re-expression is unlikely to help us. As amounts, 1810, 1850, and 1890 
are very similar, the outer values differing only a few percent from the middle 
one. 

Re-expressing a variable that changes by only a few percent rarely gets rid 
of more than a barely detectable curvature. 

One way to make the x's less alike as amounts would be to figure dates 
from some origin later than the birth of Christ. To figure from 1776 would be 
quite unrealistic, since there had been much immigration before that date. To 
figure from 1600 would be more realistic, but even this would be neglecting a 
substantial Amerind population. 

exhibit 1 of chapter 6: U.S. population 

The early population of the U.S., x and y interchanged 
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Let us try "date - 1600" anyway. An example should be useful, so long as 
it is not quite foolish. To keep our numbers of convenient size, we may as well 
measure "date - 1600" in centuries. 

Our new x values for the last 3 points are 2.1, 2.5, and 2.9. They now vary 
by about ± 15%, which is much more than before. We have some hope, but we 
cannot expect to find it easy to take care of substantial curvature, such as we 
still face. Since the change from date in years to [(1/100)(date) - 16] is a trivial 
re-expression--one that involves only multiplication by, and addition of, 
constants, our need to move up the x ladder is unchanged. 

Let us begin by going to the cube of the new x. We find 

The three points are: 

and the two slopes are: 

(2.1)3 = 9.261 
(2.5? = 15.625 
(2.9)3 = 24.389 

(9.3, 7.2) 
(15.6, 23.2) 
(24.4, 62.9) 

23.2 - 7.2 3.2 =----
15.6 - 9.3 
62.9 - 23.2 4.5 =----
24.4 - 15.6 

The slope is still larger for the second interval, though only by about 2 to 1 
rather than by 3 to 1. We have made progress, but clearly need to go further 
still. 

and 

Trying x 6
, which is easy to find by squaring x 3

, gives 

(85, 7.2) 
(244, 23.2) 
(501,62.9) 

.102 = 23.2 - 7.2 
244 - 85 

.114 = 62.9 - 23.2 
591 - 244 

This is a lot closer, but we are not there yet. 
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Trying x 8 gives 

and 

(378, 7.2) 
(1526, 23.2) 
(5002, 62.9) 

23.2 - 7.2 
.0139 = 1526 - 378 

62.9 - 23.2 .0114 = -----
5002 - 1526 

We seem at last to have gone too far. 
Trying x 7 should come quite close. We find 

( 180, 7.2) 
( 610, 23.2) 
(1725, 62.9) 

.0372 = 23.2 - 7.2 
610 - 180 
62.9 - 23.2 

.0357 = 1725 - 610 

Agreement is now fairly good. 
If we are to re-express 

(year - 1600), 

we find that our three points suggest the use of either 

(year - 1600f 

or, equivalently, 

(
year - 1600)7. 

100 

We ought at least look at the results of doing this. Exhibit 2 shows the 
numbers, exhibit 3 the gross picture, exhibit 4 some differences. As either 
exhibit 2 or exhibit 4 shows, the deviations of the U.S. population, expressed in 
millions, from 

O 72 36 (
date - 1600)7 

. + 0.0 100 

are less than 150,000 from 1800 to 1830 and from 1870 to 1890, with an 
"extra" million or two counted in 1840, 1850, and 1860. 
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exhibit 2 of chapter 6: U.S. population 

The results of re-expressing x in dealing with U.S. population in the nineteenth 
century 

z y 
(date - 1600)7 Population 

Date I 100 (in millions) I .036z I L...llifU 
1800 128 5.31 4.61 0.70 
1810 180 7.24 6.48 0.76 
1820 249 9.64 8.96 0.68 
1830 340 12.87 12.24 0.63 
1840 459 17.07 16.52 1.55 

1850 610 23.19 21.96 1.23 
1860 803 31.44 28.91 2.53 
1870 1046 38.58 37.66 0.92 
1880 1349 50.16 48.56 1.60 
1890 1725 62.95 02.10 0.85 

1900 2187 76.0 78.7 -2.7 
1910 2751 92.0 99.0 -7.0 
1920 3436 105.7 123.7 -18.0 

exhibit 3 of chapter 6: U.S. population 

(
date - 1600)7 The early U.S. population plotted against z = 100 
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exhibit 4 of chapter 6: U.S. population 

The result of flattening exhibit 3 
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a caveat 

So far, either as quality of fit or ability to set residuals in clear view goes, 
plots such as exhibits 3 and 4 are as good as the plots of the last chapter, which 
related log population to date in years. If our purpose is to examine residuals-
-as it so often is--either plot is effective and useful. 

When then should we make a distinction between the two plots? Surely we 
do need to make a distinction when we want to find an easily communicated 
description. That the U.S. population grew about 2.8% per year from 1800 to 
1890 is relatively easy both to communicate and to understand. This is a major 
advantage, since we cannot say the same of the y vs. x 7 relationship. (Both, of 
course, apply over a limited span of years. Both fail--faster and faster--as we 
move on beyond 1900.) For communication, there is no doubt that log y vs. x 
is a more useful description. 

Like any good fit, either the log y vs. x or the y vs. x 7 plot is subject to 
dangers of overvaluation. We see that each fits closely, though they cannot be 
exactly alike. Particularly if we have found only one of the two, there is a very 
natural tendency to convert "a good fit" into "this is how it had to be" or "a 
basic law of population growth". One example of a close fit, by itself, is far 
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from representing evidence for such strong statements. The fact that we have 
found two close fits of quite different form emphasizes our need to learn to 
avoid this sort of jumping at conclusions. Conversely, we can make many good 
uses of a close fit, whether or not it is "a basic law". 

review questions 

If we are to re-express x, which way ought we move on the ladder? Why 
must this be so? What happens if we exchange x and y axes in the V.S. 
population example? If x varies by only a few percent, what then? What trials 
did we make in re-expressing dates? Do we expect only one choice of 
re-expression to straighten a given set of points out thoroughly? What if we 
find several? Can we infer a "basic law" from one close fit? Why is one 
straightening of V.S. population growth easier to communicate than the other? 

6D. A braking example 

Let us next look at an example where re-expressing x seems to be the 
natural way to make the data more orderly and more describable. 

Exhibit 5 shows the speed and distance to stop for 50 cars. Exhibit 6 plots 
the data. We could fit most of the data points with a straight line. However, a 
fitted line would give zero stopping distance at a speed between 5 and 10 miles 
per hour. The one thing we are sure of in this example is that zero stopping 
distance goes with zero speed, and vice versa. We didn't have to test cars to 
know that--or to put a point at (0,0). We must face curvature, and try to 
eliminate it. 

Three reasonable points to take are, then, 

(0,0) 

and the two marked by large x's in exhibit 6, 

(15,35) 
The two slopes are 

35 - 0 
---23 15 - 0 - . 

and (25,90). 

and 
90 - 35 
25 - 15 = 5.5. 

To re-express x, since the curve bulges toward large x, we ought to move 
d 23 T' 2· towar x, x ,etc. rymg x gIVes 

with slopes of 
(0,0) 

.15 = 35 - 0 
225 - 0 

(225,35) 

and 

Clearly, using x2 is a reasonable try. 

(625,90) 

.14 = 90 - 35 
625 - 225 
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Exhibit 7 shows the plot of y against x 2
, which now looks quite straight. If 

we take 
(0,0) and (600,80) 

as representative points, we are led to try 

y - .133x 2 

as a reasonable flattened quantity. 
Exhibit 8 shows the result. It is far from wonderful, but seems to be 

reasonably flat, although the behavior for x 2 near 0 does not fit too well with 
the known point at (0, 0). 

using our knowledge 

We need to try something further. We believe in y = 0 when x = O. 
Perhaps we should use this belief in choosing what to plot. How can we do 
this? 

exhibit 5 of chapter 6: braking distances 

Speed and distance to stop 

Speed, x Distance to stop, Y 
(mph) (in feet) 

4 2,10, 
7 4,22, 
8 16, 
9 10, 

10 18,26,34, 
11 17,28, 
12 14, 20, 24, 28, 
13 26, 34, 34, 46, 
14 26, 36, 60, 80, 
15 20, 26, 54, 
16 32,40, 
17 32, 40, 50 
18 42, 56, 76, 84, 
19 36, 46, 68, 
20 32, 48, 52, 56, 64, 

(21) 
22 66, 
23 54, 
24 70, 92, 93, 120, 
25 85, 

S) SOURCE 
Mordecai Ezekiel, 1930. Methods of Correlation Analysis. New York, John Wiley. Table 11, page 41. 

Also Table 10, page 43, of 2nd edition 1943. Table 4.1, page 45 of 3rd edition 1959, by Mordecai Ezekiel 
and Karl A. Fox, has similar but different data. 

j 
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exhibit 6 of chapter 6: braking distances 

Plot of exhibit 5s data 

Distance 
to stop 
(teet) 
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exhibit 7 of chapter 6: braking distances 

Speed2 and distance to stop for 50 motor cars 
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One way is to plot y/x--rather than y--against x. Any finite value for y/x 
will make y go to zero as x goes to zero. Thus any reasonable behavior of our 
y/x vs. x plot will lead to a fit that makes x = 0 go with Y = O. 

Exhibit 9 gives the values of y/ x. Exhibit 10 plots y/ x against x. The 
behavior of the point cloud is quite reasonable, so we select two representative 
points as shown. They are 

(5,1.4) and (25,3.7). 

The corresponding line is 

y 
.115x + .8. 

x 

The residuals are written down in exhibit 11 and plotted in exhibit 12. 
We now see: 

<> 10 wandering points on the high side--9 between 1.1 and 1.9, one very 
high--these presumably represent bad brakes or slow-responding drivers. 
<> a mass of other points which, if taken by themselves, seem quite level but 
placed about 0.5 too low. 

exhibit 8 of chapter 6: braking distances 

Flattening by use of y - 1 . 33x2 
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exhibit 9 of chapter 6: braking distances 

The values of y/ x 
I y/x 

4 0.5,2.5 
7 0.6,3.1 
8 2.0 
9 1.1 

10 1.8, 2.6, 3.4 
11 1.6, 2.6 
12 1.2, 1.7,2.0,2.3 
13 2.0, 2.6, 2.6, 3.5 
14 1.9, 2.6, 4.3, 5.7 
15 1.3,1.7,3.6 
16 2.0, 2.5 
17 1.9, 2.4, 3.0 
18 2.3,3.1,4.2,4.7 
19 1.9, 2.4, 3.6 
20 1.6, 2.4, 2.6, 2.8, 3.2 

(21 ) 
22 
23 
24 
25 

3.0 
2.3 
2.9, 3.8, 3.9, 5.0 
3.4 

exhibit 10 of chapter 6: braking distances 

yl x against x 
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Thus, our final description can run as follows: 

40 points fairly well described by: 

or 

y 
- = .115x + .8 - .5 
x 

y = .1l5x2 + .3x, 

accompanied by 9 points with y greater than this expression by about 2x 
and one point greater by about 4x. 

Careful and repeated analysis can lead to effective description. 

review questions 

What example did we use in this section? What fact were we entitled to be 
sure of? How does exhibit 6 behave? What three points is it natural to choose? 
What re-expression do they lead to? How effective does this re-expression 
seem to be? What did we then think of trying? Why was it natural to think of 
it? How did the resulting plots look? Do there seem to be stray values? Are you 
surprised? 

exhibit 11 of chapter 6: braking distances 

The values of (y/x) - 0.115x - 0.8 

10.115x+0.811 ylx-0.115x-0.8 
4 1.3 -0.8,1.2, 
7 1.6 -1.2, 1.5, 
8 1.7 0.3, 
9 1.8 -0.7, 

10 2.0 -0.2, 0.6, 1.4, 
11 2.1 -0.5, 0.5, 
12 2.2 -1.0, -0.5, -0.2, 0.1, 
13 2.3 -0.3, 0.3, 0.3, 1.2, 
14 2.4 -0.5, 0.2, 1.9, 3.3, 
15 2.5 -1.2, -0.8, 1.1, 
16 2.6 -0.6, -0.1, 
17 2.8 -0.9, -0.4, 0.2, 
18 2.9 -0.6, 0.2, 1.3, 1.8, 
19 3.0 -1.1, -0.6, 0.6, 
20 3.1 -1.5, -0.7, -0.5, -0.3, 0.1, 

(21 ) 
22 
23 
24 
25 

3.3 
3.4 
3.6 
3.7 

-0.3 
-1.1 
-0.7, 0.2, 0.3, 1.4 
-0.3 
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6E. The vapor pressure of H20 

The vapor pressure of water or ice is the highest pressure of water vapor 
(steam, if you like) that can exist in equilibrium with the water or ice at a given 
temperature. Its values are well known, and of considerable practical impor-
tance. In terms of temperatures Celsius (once called centigrade, giving O°C = 
32°F and 100°C = 212°F) and pressures in mm of mercury (760 mm is one 
standard atmosphere), these vapor pressures at different temperatures are 
given in exhibit 13. 

Just a look at the first two columns of this table shows that a direct plot of 
p against t will show us only a very rapidly rising pressure. (If 139893.20 can 
be plotted, even 760.00 can hardly be seen.) Accordingly, we plan to do 
something to at least partly straighten out this plot. Taking the logarithm of p 
looks as if it might help. 

exhibit 12 of chapter 6: braking distances 

Plot of (y/x)- 0.115x'- 0.8 against x 
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Column (3) of exhibit 13 contains the values of log p. This looks conceiva-
bly plottable, so we proceed to exhibit 14, which can be looked over, but is far 
from straight. 

Another step needs to be taken. We could try to find some empirical 
approach, but we can go more directly to our goal if we recall that plotting log 
pressure against the reciprocal of the absolute temperature is rather common in 
physical chemistry. (Or if we use the closing example of the next section.) 
Here, one kind of absolute temperature is the Celsius temperature increased by 
about 273.1°C. 

Column (4) of exhibit 13 contains values of -1000(1/T), where T = 

t + 273.1°C. (The factor 1000 has been used to avoid unsightly and confusing 
zeros.) The result of plotting log p against column (4) of exhibit 13 is shown in 
exhibit 15. At last we have a reasonably good straight line, one worth 
calculating residuals about. 

Column (5) of exhibit 13 contains values of log p - 2.25( -1000/T) which, 
as we see, is reasonably constant. Subtracting 8.8 clearly gives residuals well 

exhibit 13 of chapter 6: vapor pressure 

The vapor pressure of H20 and some associated quantities 

Iwe)11 p(mm Hg)1 
-40 0.105 
-20 0.787 

o 4.5687 
20 17.363 
40 54.865 
60 148.88 
80 354.87 

100 760.00 
120 1489.14 
140 2710.92 
160 4636.00 
180 7520.20 
200 11659.16 
220 17395.64 
240 25100.52 
260 35188.00 
280 48104.20 
300 64432.80 
320 84686.80 
340 109592.00 
360 139893.20 

l.!Q9.£J 
-.9788 
-.1040 

.6598 
1.2396 
1.7393 
2.1728 
2.5501 
2.8808 
3.1729 
3.4331 
3.6661 
3.8762 
4.0667 
4.2404 
4.3397 
4.5464 
4.6822 
4.8091 
4.9278 
5.0398 
5.1458 

I (4) I 
-4.2900 
-3.9510 
-3.6617 
-3.4118 
-3.1939 
-3.0021 
-2.8321 
-2.6802 
-2.5439 
-2.4207 
-2.3089 
-2.2070 
-2.1137 
-2.0280 
-1.9489 
-1.8758 
-1.8080 
-1.7449 
-1.6861 
-1.6311 
-1.5795 

U§LJ 
8.6737 
8.7858 
8.8986 
8.9162 
8.9256 
8.9275 
8.9223 
8.9113 
8.8966 
8.8797 
8.8611 
8.8420 
8.8225 
8.8034 
8.7847 
8.7670 
8.7502 
8.7351 
8.7215 
8.7097 
8.6997 

(4) = -1000(lIT), where T = t + 273.1°C 
(5) = log p - 2.25(-1000/T) 
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exhibit 14 of chapter 6: vapor pressure 

Vapor pressure of H20 and temperature (logarithmic scale for pressure, which is 
in mm Hg) 

-I x 

-40 100 200 

exhibit 15 of chapter 6: vapor pressure 

300 

t (oc) 
) 

Vapor pressure of H20 and temperature (logarithm of pressure, reciprocal of 
absolute temperature) 

log 
prt5lUre 

5 

-I 

x 

I I 
-4 -3 

• 

x 

x . 

I 
-2 

-Iooqlr 
) 
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worth plotting. Exhibit 16 shows the results. The most striking result is the 
apparent split of our curve into two parts with a corner at the third point from 
the left. What might this mean? 

When we recall that this point comes at O°C (= 32°F), which is the 
freezing point of water, we see that a break at this' point is quite reasonable. 
Below O°C we are dealing with the vapor pressure of solid water (ice), while 
above this point we are dealing with the vapor pressure of liquid water. 

Note that this fact was not forced upon us by our data until we both 
straightened and flattened the plot. 

review questions 

What data did we look at in this section? Could we plot it at all in its 
original form? Did we re-express y? Why? Was this enough? Could we go 
further? How? How well did we then do? Could we see anything new when we 
looked at the residuals? Did such a look start off any ideas? 

exhibit 16 of chapter 6: vapor pressure 

Residuals of log vapor pressure from a straight line in - 1fT (water) 

Residu.1 

0.1 

0.0 

-0,1 

/ 
I 

I 
I 

I 
I 

x 

I 
I 
I 
" / 

/ 
I 

-4 

I 

/ 
I 
/ 

-3 

Abscissa is : 1000 times the negative reciprocal 
of the absolute temperature (oK) 

Ordinate IS'· 
(I<>i vapor pre,sure)-(B.g·2250/T) 

-2 -I 
-IOOO/T 

) 
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6F. Re-expressing the second variable 

As we have just seen, it will not always be wise--or satisfactory--to 
change only one of the two expressions. Sometimes it pays to re-express both x 
and y. In such a situation we may need to do "cut and try". However, once we 
have agreed to try a specific expression for one of the variables, be it x or y, we 
can use the same rules to narrow down our choice of the second expression. 

As an example, let us take three points from the example just treated in 
the last section, and see how we might have been guided. From exhibit 13 we 
have 

(0, 4.5687) 
(100, 760.00) 
(200, 11659.16). 

Clearly, the middle point is below the line that joins the other two--and also 
to the right of that line. If we are to re-express y we should look toward log y 
and -l/y. Trying logs gives 

(0,0.6598) (l00,2.8808) (200,4.0667) 

with slopes of 
2.8808 - 0.6598 = 2.2210 = .02221 

100 - ° 100 
and 

4.0667 - 2.8808 = 1.1859 = .01186. 
200 - 100 100 

Thus the middle point is now above and to the left of the line. We could try 
going only as far as JY, which is about halfway to log y. If we do this, say by 
using exhibit 5 of chapter 3, we find 

(0, 2.12) 
(100, 27.6) 
(200, 108) 

and we see that JY goes nowhere nearly far enough. To go on to 

is easy. If we do this, we find 

(0, 1.44) 
(100, 5.3) 
(200, 10.4) 
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for which the slopes are 

5.3 - 1.44 = 3.86 = .0386 
100 - 0 100 

lOA - 5.3 = 2.:!.. = .0510 
200 - 100 100 

so that we see that we are not yet far enough. Those who love to repeat square 
roots will now try 

finding 

for which the slopes are 

(0, 1.20) 
(100, 2.32) 
(200, 3.20) 

2.32 - 1.20 = 1.12 = .0112 
100 - 0 100 

3.20 - 2.32 = .88 = 0088 
200 - 100 100 . . 

This time we have gone too far. As a result, if we are to change only y, we 
should try something between yl/4 and y1!8, perhaps yl/6 or yl!7. 

another try 

This is, however, not our only reasonable choice. Going to log y did much 
to straighten out our three points. True, it went a little too far, but perhaps we 
could do something by keeping log y and re-expressing x. Before we do this, 
however, we should stop and think for a moment. As we have written it, x is 
temperature in °C (freezing water = O°C, boiling water = 100°C). If we are to 
re-express simply, we ought not to tie our zero to a property of so special a 
substance as water. (We are looking at water's vapor pressure, but water has a 
vapor pressure below O°C, too.) Rather we should figure our temperatures so 
that we run from the so-called absolute zero, which is just below -273°C. 

Our intermediate starting point then should be 

(273.1,0.6598) 
(373.1,2.8808) 
(473.1,4.0667) 
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with slopes of .02221 and .01186, and a middle point above and to the left of 
the line. If we are to re-express x, we should move toward log x or -1/ x. Let us 
try log x. We find: 

(2.44, 0.6598) 
(2.57, 2.8808) 
(2.67,4.0667) 

2.8808 - 0.6598 2.2210 
2.57 - 2.44 .13 

4.0667 - 2.8808 1.1859 
2.67 - 2.57 .10 

17.1 

11.8 

Using logs has helped, but not enough. Let us try -l/x, for which we have 

(- .00366,0.6598) 
(- .00268, 2.8808) 
(- .00211,4.0667) 

2.8808 - 0.6598 = 2.221 = 2266 
-.00268 - (-.00366) .00098 

4.0667 - 2.8808 = 1.186 = 2080 
-.00211 - (-.00268) .00057 

for which the slopes agree better--have a ratio nearer 1--than with any other 
combination so far tried. Accordingly 

log Y and -l/x 

where x is absolute temperature, seems to be a good choice. As we know from 
the last section, it proves to be one. 

review questions 

Does it ever pay to re-express both x and y? Do we have to do this blind? 
How is guidance for re-expressing the second coordinate to be found? How 
much is it like guidance when only one coordinate is re-expressed? If we tackle 
the vapor pressure of water, re-expressing only y, what are we led to? If we 
pick log y, what are we led to for x? 

6G. Wise change of origin as a preliminary 

We have already seen two examples where a change of origin was part of a 
sensible approach to straightening: (1) the early population of the U.S. as a 
function of time (where a time origin at the birth of Christ--1600 years 
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before the beginning of European immigration to North America--was far 
from sensible--once we thought about it! Why 1600 and not 600 or 2600?) 
and (2) the vapor pressure of water as a function of centigrade temperature. 
(Why should we take the origin at freezing?) 

The same sort of need to think about a sensible origin arises in other 
problems, sometimes with regard to x and sometimes with regard to y. In one 
broad class of cases, the question arises because the amount we measure is the 
sum of contributions, some of which change slowly if at all, while the remaining 
contribution changes in such a way that re-expression could flatten the plot if 
this contribution could be measured separately. 

The natural approach to this sort of data is to form 

observation MINUS background 

where "background" is a constant chosen to allow for the slowly changing 
components. We are not likely to be able to pick the value for "background" 
either on the basis of general insight or on the basis of doubtfully-related 
historical data. We expect to learn about it from the same set of data that we 
are trying to flatten. We are likely to approach choosing a plausible value for 
"background" by trying various values for it and seeing which one leads to data 
that can be more thoroughly flattened by further re-expression. 

Observation of radioactive decay yields many problems of this sort. Any 
single kind of radioactive atom decays on a steady percentage basis--so many 
percent is gone every so many days, years, or millennia. Many processes of 
isolating--or making--some one kind of radioactive atom also isolate--or 
make --one or more other kinds. If these other kinds decay-- but decay 
more slowly--their presence can often be adequately allowed for by a 
constant background. 

a radioactive decay example 

In 1905, the study of radioactive substances was in its infancy. Meyer and 
von Schweidler reported the relative activities for an experimental object set 
out in exhibit 17. If we plot activity against time, the result is exhibit 18, which 
is far from being straight. It is again natural to take logarithms, especially since, 
in simple radioactive decay, the logarithm of activity should decrease linearly 
with time. 

Exhibit 19 shows the behavior of log activity against time. A noticeable 
curvature remains. In this situation the most plausible source of curvature is 
contamination by some other radioactive substance that decays much more 
slowly than the one of central interest. If such there be, it will not have 
contributed more than two units of activity (since at 45 days the observed 
activity is down to 2.1 units). 
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It is reasonable to explore the consequences of assuming the presence of 
1.0 to 1.5 units of activity from such a contaminant by, successively: 

<:>plotting against time either 

log(activity - 1.0) 

or 

log(activity - 1.5) 

which could represent the log of the rapidly-decaying activity (and which are 
given in columns (4) and 5) of exhibit 17). 

<:>fitting a straight line, perhaps roughly. 
<:>plotting the residuals. 

exhibit 17 of chapter 6: radioactivity 

The decay of radioactivity and associated quantities 

um lliLJ l@j lJ§lJ lJZlJ 
1.556 1.544 1.538 1.551 1.545 
1.415 1.398 1.389 1.471 1.466 
1.364 1.344 1.334 1.476 1.474 
1.276 1.253 1.241 1.418 1.416 
1.250 1.225 1.212 1.423 1.422 
1.167 1.137 1.121 1.401 1.401 
1.127 1.093 1.076 1.456 1.461 
1-053 1.013 .991 1.409 1.411 
.929 .875 .845 1.370 1.370 
.771 .690 .643 1.284 1.273 
.699 .602 .544 1.460 1.454 
.531 .380 .279 1.469 1.434 
.380 .146 -.046 1.433 1.319 
.322 .041 -.222 1.526 1.353 

(3) = log(activity) 
(4) = log (activity - 1.0) 
(5) = log(activity - 1.5) 
(6) = .033t + (column 4) 
(7) = .035t + (column 5) 

SI SOURCE 
S. Meyer and E. von Schweidler, 1905. Sitzungsberichte der Akademie der Wissenschaften zu Wien, 
Mathematisch-Naturwissenschaftliche Classe, p. 1202 (Table 5). 



196 exhibits 18 and 19/6: Straightening out plots 

exhibit 18 of chapter 6: radioactivity 

The data of exhibit 17 

Actlvit.Y 

to 

10 

Days f rom ,tart 
20 

exhibit 19 of chapter 6: radioactivity 

The same data on a log scale 

ftc! ivity 

zo 

10 

5 

20 40 



6G: wise change of origin/exhibit 20 197 

The results are shown in exhibit 20. (Columns (6) and (7) of exhibit 17 give 
these residuals increased by 1.45, calculated as ".033t + (column 4)" and 
".035t + (column 5)", respectively.) Of the two choices, allowance for 1.0 unit 
of contamination seems to give a more nearly horizontal set of residuals--to 
lead to a closer fit. 

(Perhaps the residuals for 1.0 do trend upward a little. The reader may 
wish to try 1.1 or 1.2.) 

review questions 

Ought we expect to make changes of origin? What are three examples? 
What is a background? When we measure radioactive substances, whether 
made or isolated, are backgrounds common? What did a plot of raw activity 
against raw time show? What two things did we do then? Did it all work out 
well? 

exhibit 20 of chapter 6: radioactivity 

Residuals from decay line allowing for long-lived contamination (two versions) 
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6H. How far have we come? 

This chapter has been devoted to guidance about how to re-express x and 
y with a view to straightening a plot. This problem arises most simply when 
one or both of x and y is an amount--or, really just a special case of an 
amount, a large count. The natural re-expressions are by powers, roots, and 
logs. 

To keep computation down, we routinely begin with three well-chosen 
points. The basic rule of thumb is then simple: 

<> move on the ladder of expressions in the direction in which the curve 
bulges. 

Exhibit 21 shows the four possible cases, and the natural steps along both 
x- and y-Iadders. (We can move along either or both.) We try new expressions 
on more of the data only when the three points have already responded well to 
them. 

In certain cases, a fresh choice of origin --before going to powers, roots, 
or logs--is valuable. Sometimes the new choice is a matter of common sense, 
sometimes of how flat the final result proves to be. 

exhibit 21 of chapter 6: indicated behavior 

How to move for each variable separately; the four cases of curve shape 

OR toward y', r','tc. 
toward 
log x, 

I 
- X I 

etc. 

toward 
I.g x, 

I 

.-1:<. 
OR toward 10% y, - f , .tc. 

towaro y', y', etc. OR 
towHd 

etc. 

toW/lrd x: 
x', 

etc . 
toward log y, -}, etc. OR 
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As we use this technique, we will need to remember that: 

<> straightening by re-expressing x is not the same as re-expressing y. 
<> just because re-expression makes things quite straight, there is no guarantee 
that we have found a new natural law. 

We are now ready: 

<> to approach the analysis of (x, y) data in terms of re-expression followed 
by straight-line fitting (perhaps in two or more steps) and the examination of 
residuals. 
<> to turn to another class of important problems. 

6P. Additional problems 

See exhibits 22 through 26. 

exhibit 22 of chapter 6: data and problems 

Three examples of radioactive decay 

AI DATA 

LQays*1 
0.8 
2.8 
6.9 
8.9 

13.1 
15.2 
16.8 
20.1 
20.8 
20.9 
21.9 
31.1 
36.8 
43.8 
49.8 
53.8 
58.8 
65.9 
73.8 
87.1 

I Activity tl 
6.70 
6.40 
5.70 
5.10 
4.30 
4.00 
3.95 
3.40 
3.40 
3.20 
3.20 
2.42 
2.30 
2.11 
2.00 
1.99 
1.98 
1.90 
1.80 
1.65 

* Since start. 
t In volts/minute. 

I Days* I 
0.8 
2.8 
4.8 
6.8 

11.8 
13.9 
16.8 
19.8 
23.8 
31.8 
32.5 

I Activity t I 
2.82 
2.34 
1.90 
1.80 
1.34 
1.24 
1.03 
1.00 
0.80 
0.55 
0.11 

IDays*1 
0.8 
1.0 
1.8 
2.1 
3.9 
5.9 
7.1 
9.1 

12.1 
12.9 
16.9 
19.9 
22.8 
25.9 
33.8 
44.1 

I Activity tl 
2.05 
2.03 
1.79 
1.77 
1.54 
1.35 
1.29 
1.23 
1.01 
0.96 
0.82 
0.68 
0.59 
0.51 
0.40 
0.32 
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exhibit 22 of chapter 6 (continued) 

pI PROBLEM 

22a) In a later paper, Meyer and Von Schweidler reported the decay of radioactiv-
ity for three samples as in panel A. Analyze at least two of these. Comment. 

SI SOURCE 
S. Meyer and E. von Schweidler 1907. "Untersuchungen ilber radioaktive Substanzen. VIII Mitteilung: 
Uber ein radioaktives Produkt aus dem Aktinium." Sber. Ak. Wiss. Wien. Math-Nat. Classe 
116 IIA1, pp. 315-322 (especially 316-317). 

exhibit 23 of chapter 6: data and problems 

Vapor pressure of mercury 
AI DATA 

Temperature 
(OC) 

0 0.0004 
20 0.0013 
40 0.006 
60 0.03 
80 0.09 

100 0.28 
120 0.8 
140 1.85 
160 4.4 
180 9.2 
200 18.3 
220 33.7 
240 59. 
260 98. 
280 156. 

300 246. 
320 371. 
340 548. 
360 790. 

pI PROBLEMS 

23a) The vapor pressure of mercury is stated to be as in panel A. Analyze 
graphically. Comment. 
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exhibit 23 of chapter 6 (continued) 

23b) Given the three points found partway through section 6F, 

(0,0.6598) 
(100,2.8808) 
(200,4.0667), 

what change in expression of this (once new) y will come close to 
straightening out these points? 

23c) Apply the result of the last problem to the data of exhibit 13, fit a straight 
line, and plot the residuals. How do the results compare with exhibit 16? 

23d) Apply the re-expression 
y becomes y1/6 

(suggested by the analysis of section 6E) to the data of exhibit 13, fit a 
straight line, and find residuals. How do the results compare with exhibit 
16? Complete the graphical analysis. Comment. 

exhibit 24 of chapter 6: data and problems 

More problems 
24a) Rates of mortality from breast cancer in different latitudes. (50; 1025, 513) 

translates as: "In latitude 500 N the mortality index for breast cancer is 102.5 
and the mean annual temperature is 51.3." Data-sets (16): (50; 1025,513), 
(51; 1045,499)' 52; 1004, 500), (53; 959,492), (54; 870,485), (55; 950,478), 
(56; 886, 473), (57; 892, 451), (58; 789, 463), (59; 846, 421), (60; 817, 442), 
(61; 722,435), (62; 651,423), (63; 681,402), (69; 673,318), (70; 525,340). 
SOURCE: A. J. Lea, 1965, "New observations on distribution of neoplasms 
of female breast in certain European countries," British Medical J. 1 (for 
1955): 486-490. Table II on page 489. PROBLEM: Can we straighten this 
plot? (Mortality index against mean annual temperature.) 

24b) Plasticity of wool: slow stretching of a single fiber. (1,321) translates as: 
"After 1 minute under load, a fiber 53.3 microns in average diameter 
(coefficient of variation of diameter = 5.4%) had stretched 32.1 % beyond its 
unloaded length." Data-sets (34): (1, 321), (3, 330), (5, 334), (8, 337), (16, 
342), (32, 348), (50,352), (110,361), (240, 377), (440,394), (740, 413), (1310, 
442), (1460, 449), (1630, 458), (1900, 469), (2090, 478), (2760, 499), (2950, 
505), (3080, 509), (3460, 519), (4280, 540), (4970, 556), (5720, 572), (6000, 
579), (6320, 586), (7120, 600), (7360, 604), (7540, 607), (8520, 623), (9020, 
629), (9230, 633), (9950, 643), (10260, 647), (10680,654). (The last data set is 
for 10,680 minutes under load and 65.4% stretch.) SOURCE: O. Ripa and J. 
B. Speakman, 1951. "The plasticity of wooL" Textile Research J. 21: 215-
221. Table I on page 217. PROBLEM: How can we straighten the plot? 
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exhibit 24 of chapter 6 (continued) 

24c) Amount of interstitial space in young chickens. ("Interstitial space" is a 
volume defined by the amount of thiocyanate ion taken up outside the 
blood within 10 minutes after injection and measured by its ratio to blood 
volume.) (1,52) translates as: "For chickens 1 week old, the interstitial space 
accounted for 52% of body weight." Data-sets (8): (1, 52), (2, 42), (3, 39), 
(4, 38), (6, 37), (8, 36), (16, 25), (32, 22). SOURCE: W. Medway and M. R. 
Kare, 1959, "Thiocyanate space in growing fowl," Amer. J. of Physiology 
196: 873-875. Table 1 on page 874. PROBLEM: How can we straighten the 
plot? 

24d) A more detailed look at interstitial volume (1, 55, 52) translates into: "At age 
1 week, the average body weight of 6 chickens was 55 grams, of which the 
interstitial space was 52%." Data-sets (8): (1,55,52)' (2, 108,42), (3,175,39), 
(4,242,38)' (6, 372, 37), (8, 527, 36), (16,1137,25)' (32, 1760,22). SOURCE: 
As for problem (24c). PROBLEM: How can we straighten the plot? How does 
the straightness here compare with that for problem (24c)? What expression 
of amount (not percent) of interstitial space in terms of weight corresponds 
to our fit? 

exhibit 25 of chapter 6: data and problems 

Some more problems 
25a) Vapor pressure of a boron analog of mesitylene. (130,29) translates as: "At 

a temperature of 13.0°C, the vapor pressure of B-trimethylborazole was 2.9 
millimeters of mercury." Data/(sets) (13): (130,29), (195,51), (225,85), (272, 
103), (318,146), (384, 213), (457,305), (561, 514), (644,745), (714,1002), (805, 
1437), (857, 1769), (915,2169). SOURCE: E. Wiberg, K. Hertwig, and A. Bolz, 
1948, "Zur kenntnis der beiden symmetrischen Trimethyl-borazole ("anor-
ganisches Mesitylen")," Zeitschrift fOr Anorganische Chemie 256: 177-216. 
Table on page 191. PROBLEM: How can we straighten this plot? Check 
your answer! 

25b) Effects of small amounts of biotin on the mobility of a microorganism. 
(5E-7, 1354) translates as: "At a biotin concentration of 5 x 10-7

, the 
mobility of Lactobacillus case; was 1.354 units". Data-sets (7): (0, 1415), 
(5E-7, 1354), (1E-6, 1311), (5E-6, 1230), (1E-5, 1234), (5E-5, 1181), (1E-4, 1188). 
SOURCE: V. R. Williams and H. B. Williams, 1949, "Surface activity of 
biotin," Journal of Biological Chemistry 177: 745-750. PROBLEM: How can 
we straighten the plot? 

25c) Electric current produced by heating aluminum phosphate. (880, 1) trans-
lates as: "At a temperature of 880°C--an absolute temperature of 
880 + 273 = 1153°K--positive electrification produced a current of 1 unit, 
where 1 unit = 2 x 10-9 amperes". Data-sets for run A (8): (880, 1), 
(950, 4), (970, 7), (995, 15), (1030, 35), (1030, 35), (1055, 49), (1110, 
126). Data-sets for run B (9): (1036, 1), (1088, 8), (1135, 5), (1160, 8), 
(1195, 15), (1230, 34), (1245, 35), (1295, 74), (1330, 168). SOURCE: A. E. 
Garrett, 1910, "Positive electrification due to heating aluminium phos-
phate," (London, Edinburgh, and Dublin) Philosophical Magazine 20: 571-
591. Table on page 581. PROBLEM: How can we straighten the plots? 
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exhibit 25 of chapter 6 (continued) 

25d) Growth-promoting effect of a purine for a deficient strain of red bread-mold. 
(0, 112) translates as: "When 0 moles of guanine per mole of adenine were 
included with 0.1 milligrams of adenine in 25 milliliters of basal medium, 
the dray weight of mycelium produced by a purine-deficinet strain of Neuro-
spora was 11.2 milligrams". Data-sets (9): (0,112), (0.25, 135), (0.59, 152), 
(0.75, 185), (1, 196), (1.5, 203), (2, 203), (2.5, 243), (3, 224). SOURCE: J. L. 
Fairley, Jr., and H. S. Loring, 1949, "Growth-promoting activities of 
guanine, guanosine, guanylic acid, and xanthine for a purine-deficient strain 
of Neurospora," Journal of Biological Chemistry 177: 451-453. Table I on 
page 453. PROBLEM: How can we straighten the plot? 

exhibit 26 of chapter 6: data and problems 
Still more problems 

26a) Measurement of a certain impurity in DDT; change of scale factor with 
temperature. (21, 248) translates as "At 21°C, the rate of crystallization (in 
microns per 5 minutes) is 24.8 times the log of the percent of this particular 
impurity." Data-sets (14): (21,248), (22, 308), (23,388), (24,465), (25, 569), 
(26,678), (27,806), (28, 959), (29, 114), (30, 139), (31, 168), (32, 202), (33, 
236), (34, 270). SOURCE: W. McCrone, A. Smedal, V. Gilpin, 1946, "Determi-
nation of 2,2, bis-p-chlorophenyl-l, 1, l-trichloroethane in technical DDT: A 
microscopical method," Industrial and Engineering Chemistry 18: 578-582. 
Table IV on page 582. PROBLEM: How can this plot be straightened? 

26b) Demand deposits in post-office savings accounts in Switzerland. (37, 458) 
translates as: "In 1937, there were 458 million francs in post-office savings 
accounts". Data-sets (29): (37,458), (38,498), (39, 523), (40,643), (41, 701), 
(42,787), (43,839), (44, 927), (45, 1001), (46,1079), (47, 1007), (48,1033), (49, 
1090), (50, 1125), (51, 1212), (52, 1248), (53, 1334), (54, 1393), (55, 1443), (56, 
1720), (57, 1720), (58, 1896), (59, 2050), (60, 2268), (61, 2643), (62,3140), (63, 
3353), (64, 3513}. (65, 3810). SOURCE: Swiss Statio;tical Abstract, issued 
November 1969 by the Swiss Credit Bank. (Title also in French and German.) 
Tables at pages 24 and 25. PROBLEM: How can we best straighten a plot for 
this data? Make the fit and plot the residuals. Summarize all results. 

26c) Revenue passenger miles on U.S. passenger airlines. (37,412) translates as: 
"In 1937, there were 412,000 revenue passenger miles on U.S. domestic 
scheduled airlines". Data-sets (24): (37,412), (38,480), (39, 683), (40, 1052), 
(41,1385), (42, 1418), (43,1634), (44, 2178), (45,3362), (46, 5948), (47,6109), 
(48, 5981), (49, 6753), (50, 8003), (51, 10566), (52, 12528), (53, 14760), (54, 
16769), (55, 19819)' (56, 22362), (57, 25340), (58, 25343), (59, 28269), (60, 
30514). (The last translates as: "In 1960, 30,514,000 revenue passenger 
miles".) SOURCE: Robert G. Brown, 1963. Smoothing, Forecasting and 
Prediction of Discrete Time Series, Prentice-Hall. Table C.7 on page 427. His 
source: F.A.A. Statistical Handbook of Aviation. PROBLEM: How can this 
plot be straightened? Plot residuals from a well-chosen straight-line fit. 

26d) Find, from other sources, 2 batches of (x, y) data-sets that interest you and 
deserve to have their plots straightened by the methods of this chapter. 
Straighten the plots. Plot the residuals. 


