
Stat 610 Lab 4: Git

October 21, 2022

Installing

If you have not already done so, the first step is to install git. You can follow the instructions at
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git.

Before you do that, you can check to see if it is already installed using git -version in the
terminal.

Set up a git repository

Once you’ve installed git, you can set up a new repository called test using git init test.

Run the following commands:

cd test

ls -a

The first moves you to the test directory, and the second should show you that there is a folder
called .git.

The objects are stored in the repository in .git/objects, and we can see whether we have any
using:

find .git/objects -type f

Since the repository is empty, there shouldn’t be any output from this command.

Create a new file

At this point, we can check the status using:

git status

which should give output

On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)

1

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git


We can make a file to commit as follows:

echo "test file" > test.txt

Now if we run git status, we should get

On branch master

No commits yet

Untracked files:

(use "git add <file>..." to include in what will be committed)

test.txt

nothing added to commit but untracked files present (use "git add" to track)

which tells us that the file test.txt is in our working directory but not in the staging area. If we
tried to commit now, nothing would happen because our staging area doesn’t have anything in
it.

To add the file test.txt to the staging area, we can use

git add test.txt

If we run git status now, we should get

On branch master

No commits yet

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

new file: test.txt

which tells us that test.txt is in the staging area, and if we would like to create a commit with
that file we can.

To create the commit, use git commit -m ’initial commit’.

The -m flag is for message, and what comes after it is the commit message, which describes what
the commit does. So when we ran the commit command, we added a snapshot of the files in the
staging area to the repository, with the commit message “initial commit”.

Now if you run git log, you should see something like

commit 7e5905faf3f704bb0cdafb482765970494ee0c75 (HEAD -> master)

Author: Julia Fukuyama <julia.fukuyama@gmail.com>

Date: Thu Oct 17 09:50:11 2019 -0400

2



initial commit

but with your information and time instead of mine.

Questions:

– What is 7e5905faf3f704bb0cdafb482765970494ee0c75?

– What does (HEAD -> master) refer to?

Making branches

Let’s try making branches. Remember that a branch is simply a pointer to a commit. We can
make a branch that points to the the most recent commit by using the git branch command.

Typing git branch with no arguments will list the current branches, and git branch with a
branch name will create a new branch.

Try:

git branch

git branch new-branch

git branch

The first command should list the branches (you should start off with just master), the second
should create a new branch called new-branch, and the third command should list the branches
again. The output from the third command should show you that you now have both master

and new-branch:

$ git branch

* master

new-branch

and the * indicates that HEAD is pointing to the master branch.

If we want to switch so that HEAD points to new-branch, we can use git checkout.

Try:

git checkout new-branch

git branch

The output from the second command should be

master

* new-branch

indicating that HEAD now points to new-branch.

The next thing to do is to make some changes and commit them. Let’s make a new file called
branch-test-file.txt, add it to the staging area, and then commit the change.

echo "this is a file for testing out branches" > branch-test-file.txt

git add branch-test-file.txt

3



git commit -m "a commit on the new branch"

To see what’s happened, let’s look at the log. You can do this by typing git log. The output
should look something like this:

commit a035427f43aec773cd918920204e5bc35ffa28ae (HEAD -> new-branch)

Author: Julia Fukuyama <julia.fukuyama@gmail.com>

Date: Thu Oct 17 09:58:32 2019 -0400

a commit on the new branch

commit 7e5905faf3f704bb0cdafb482765970494ee0c75 (master)

Author: Julia Fukuyama <julia.fukuyama@gmail.com>

Date: Thu Oct 17 09:50:11 2019 -0400

initial commit

This gives us some useful information. We see that

– There have been two commits.

– Remember that a branch is just a pointer to a commit? We see that the master branch poins
to the commit 7e5905faf3f704bb0cdafb482765970494ee0c75, and the new-branch branch
points to commit a035427f43aec773cd918920204e5bc35ffa28ae.

– Also remember that HEAD points to a branch, and advances the branch when we made the
new commit. Before the commit, new-branch, HEAD, and master all pointed to 7e5905faf3f704bb0cdafb482765970494ee0c75.
Because we made commit a035427f43aec773cd918920204e5bc35ffa28ae when HEAD was
pointing to new-branch, the new-branch pointer advanced when we made commit a035427f43aec773cd918920204e5bc35ffa28ae.
Since HEAD was not pointing to master, master continued to point to commit 7e5905faf3f704bb0cdafb482765970494ee0c75.

Changing branches

Suppose we decide we don’t like what we did when we made new-branch, and we’d like to go
back to the state of the directory before. We can use git checkout to go back to a different
commit.

Try running

ls

git checkout master

git branch

ls

– ls lists the files in the working directory, so you should see branch-test-file.txt and
test.txt, the two files we’re created.

– git branch should tell you that you are now on master.

– The second ls lists the contents of the working again, but now branch-test-file.txt

should be gone. This is because we went back to commit 7e5905faf3f704bb0cdafb482765970494ee0c75,

4



the commit master was pointing to, and at that point we had not made the branch-test-file.txt

Let’s make and commit another file.

echo "master branch testing file" > master-branch-test.txt

git add master-branch-test.txt

git commit -m "a commit on the master branch"

Now if we run git log, we can see the history again, but the default is to only show the ancestors
of the branch HEAD is pointing to:

commit e8321a77a213cbebf61bac6bfd6cd4944bdfdf2c (HEAD -> master)

Author: Julia Fukuyama <julia.fukuyama@gmail.com>

Date: Thu Oct 17 10:08:17 2019 -0400

a commit on the master branch

commit 7e5905faf3f704bb0cdafb482765970494ee0c75

Author: Julia Fukuyama <julia.fukuyama@gmail.com>

Date: Thu Oct 17 09:50:11 2019 -0400

initial commit

If we want to see the commits on all the branches, we can run git log -branch, which will give

commit e8321a77a213cbebf61bac6bfd6cd4944bdfdf2c (HEAD -> master)

Author: Julia Fukuyama <julia.fukuyama@gmail.com>

Date: Thu Oct 17 10:08:17 2019 -0400

a commit on the master branch

commit a035427f43aec773cd918920204e5bc35ffa28ae (new-branch)

Author: Julia Fukuyama <julia.fukuyama@gmail.com>

Date: Thu Oct 17 09:58:32 2019 -0400

a commit on the new branch

commit 7e5905faf3f704bb0cdafb482765970494ee0c75

Author: Julia Fukuyama <julia.fukuyama@gmail.com>

Date: Thu Oct 17 09:50:11 2019 -0400

initial commit

Switching between commits or branches

We can switch between commits using git checkout, followed by either a branch name or a
commit name. Normally you will checkout using a branch name, not a commit name, but you
can try it out to see that it’s possible. (NB: if you check out using a commit name that doesn’t
correspond to a branch, you’ll be in a detached HEAD state because HEAD is suppose to point

5



to a branch. You don’t really want to commit things in this state, so checking out a commit by
name is more for looking around, not for modifying files.)

Try

git checkout XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

git checkout master

git checkout new-branch

where the 40 X’s are a commit number that you saw in git log.

Merging

Suppose now we’ve decided that we like the work we’ve done on both master and new-branch.
We can use merge to create a new commit that has the work done on both.

git checkout master

ls

git merge new-branch -m "merge commit"

ls

After the first ls you should have seen only master-branch-test.txt and test.txt. After the
merge, the second ls should show you that we now also have branch-test-file.txt.

Now if we look at the log with git log, we can see all of the commits so far:

commit 7bcff11a7856a79c81e960d00412b70c520952fd (HEAD -> master)

Merge: e8321a7 a035427

Author: Julia Fukuyama <julia.fukuyama@gmail.com>

Date: Thu Oct 17 10:19:33 2019 -0400

merge commit

commit e8321a77a213cbebf61bac6bfd6cd4944bdfdf2c

Author: Julia Fukuyama <julia.fukuyama@gmail.com>

Date: Thu Oct 17 10:08:17 2019 -0400

a commit on the master branch

commit a035427f43aec773cd918920204e5bc35ffa28ae (new-branch)

Author: Julia Fukuyama <julia.fukuyama@gmail.com>

Date: Thu Oct 17 09:58:32 2019 -0400

a commit on the new branch

commit 7e5905faf3f704bb0cdafb482765970494ee0c75

Author: Julia Fukuyama <julia.fukuyama@gmail.com>

Date: Thu Oct 17 09:50:11 2019 -0400

6



initial commit

Notice which commits master and new-branch point to, and where HEAD points. Can you explain
why?

Wrapping up

This is a very small introduction to git. There are many more things you can do, and the Pro Git
book has a good overview. However, to understand how it all works, the most important things
to understand and know how to do are:

– How to create a commit

– How to create and move between branches (and remembering that branches are just point-
ers to a commit)

– Understand that HEAD points to a certain branch, and that when you make a new commit,
the branch that HEAD points to will be advanced to that new commit.

7


