
Stat 610 Homework 4

Due Thursday, October 5, 11:59pm.

Assignment

Your assignment is to debug the functions in the homework4-buggy.R script.

The script also has some test cases so that you know when you’ve gotten the right results.

1. The Berhu penalty is sometimes used for variable selection. It is defined as

f (x, δ) =

{
|x| |x| ≤ δ
x2

2δ +
δ
2 |x| > δ

It is a smooth function, and if δ = 1, should look like this:

−3 −2 −1 0 1 2 3

0
1

2
3

4
5

xseq

sa
pp

ly
(x

se
q,

 b
er

hu
, 1

)

The berhu function should compute the values of this function, but it doesn’t seem to be
working right, please fix it.

2. The trimmed mean is sometimes used in robust statistics, and is defined by taking the mean
of a set of numbers after removing the top α and bottom α fraction of the numbers (i.e., re-
moving all the values above the 1 − α quantile and below the α quantile). trimmed_mean(x,

1

trim) function should compute the trimmed mean of x, trimming the top and bottom trim

fraction of the values.

The function trimmed_mean in the script is not working properly: it gives NA on the test
data now, when the result should be 2.75.

You can check your debugged verison against the mean function in R: trimmed_mean(x,
trim = alpha) should always give the same output as mean(x, trim = alpha).

3. String processing. You found some interesting data on wikipedia (https://en.wikipedia.
org/wiki/Mercer_Quality_of_Living_Survey) about city quality of life, but it’s not format-
ted in a convenient way and you need to write a function to take the string representation
into a data frame. The process_table function tries to do this, but has several bugs that
you need to fix.

Once you’ve debugged process_table, the results should look like this (don’t worry about
the unicode characters).

> process_table(city_rankings)

X1 Rank Old.Rank Score City

1 1 1 1 108.6 Vienna

2 2 2 2 108.0 Z<U+00FC>rich

3 3 3 4 107.0 Munich

4 4 4 6 107.2 D<U+00FC>sseldorf

5 5 5 7 107.0 Frankfurt

4. In gradient descent https://en.wikipedia.org/wiki/Gradient_descent, we try to find the
value x⋆ that minimizes a function f .

Given a step size s and, a tolerance ε, and an initial guess at the minimizer x0, gradient
descent is the following procedure:

– Set i = 1.

– Let xi = xi−1 − s f ′(xi−1).

– If | f (xi)− f (xi−1)| < ε, return xi, otherwise increment i by 1 and repeat the previous
step.

The gradient_descent function takes a function, the function’s derivative, a starting po-
sition, a step size, and a tolerance and attempts to implement the procedure described
above.

As an example,

gradient_descent(function(x) x^2, function(x) 2 * x,

start = 1, step_size = .1, tol = 1e-10)

should return 0, or something close, because the function we want to minimize is f (x) = x2,
which has a minimum at x = 0.

Unfortunately, the function as implemented now doesn’t work, and you’ll need to fix it.

2

https://en.wikipedia.org/wiki/Mercer_Quality_of_Living_Survey
https://en.wikipedia.org/wiki/Mercer_Quality_of_Living_Survey
https://en.wikipedia.org/wiki/Gradient_descent

5. There is a variant of gradient descent that uses backtracking line search to determine the step
size. The only difference between it and the gradient descent described above is that instead
of a fixed step size s, the step size is determined by backtracking line search.

As with gradient descent, we want to find the minimizer of a function f . Given a tolerance
ε and an initial guess at the minimizer x0, gradient descent with backtracking line search is
the following procedure:

– Set i = 1

– Let xi = xi−1 − backtrack(x, f , α, β) f ′(xi−1).

– If | f (xi)− f (xi−1)| < ε, return xi, otherwise increment i by 1 and repeat the previous
step.

The function backtrack computes a step size t using the following procedure:

– Set t = 1.

– If f (x − t f ′(x)) > f (x)− αt f ′(x)2, set t = βt, otherwise stop and return t.

The functions as written now are buggy, and you can check whether you have debugged
correctly by trying

backtrack_desc(function(x) x^2, function(x) 2 * x, start = 10,

alpha = .03, beta = .8, epsilon = 1e-10)

backtrack_desc(function(x) x^2, function(x) 2 * x, start = 1,

alpha = .03, beta = .8, epsilon = 1e-10)

which should both return something close to 0.

Submission parameters

– Submit the debugged R script. Add comments describing what you changed and what the
problem was.

3

