
Stat 610 Lab 4: Testing and top-down design

October 3, 2019

Linear regression is often not flexible enough, and several alternatives have been proposed. One
such example is locally weighted regression. Suppose we have a single predictor, x, and that our
model is y = f (x) + ϵ, where ϵ ∼ N(0, σ2). We don’t want to assume that f is linear, but we can
estimate it approximately at z as f (z) = a0 + b0x0, where a0 and b0 are chosen to minimize

n

∑
i=1

W (|xi − z|/ω) (yi − a0 − b0xi)
2

W(r) is a positive, even weight function defined as

W(r) =

{
(1 − |r|3)3 |r| < 1
0 o.w.

ω is the window size or bandwidth, and it controls how many neighboring values contribute to
the regression.

The minimization problem is a weighted least squares problem (bonus: show this), and the
solution is

f̂ (z) =
(
1 z

)
(XTWzX)−1XTWzy

where X ∈ Rn×2 is a matrix whose first column contains all 1’s and whose second column
contains the values of the predictor (so Xi2 = xi) and Wz is the diagonal matrix whose ith
element is W(|xi − z|/ω).

We would like to make a function that fits a local regression. That is, if we are given an n-vector
of predictors x = (x1, . . . , xn), an n-vector of response variables y = (y1, . . . , yn), and an m-
vector z = (z1, . . . , zm) of points for which we want fits, our function should return an m-vector
containing ( f̂ (z1), . . . , f̂ (zm)).

Top-level function

If we are designing this function from the top down, our first task is to write a function that takes
as input x, y, z, and ω and returns a vector ( f̂ (z1), . . . , f̂ (zm)).

That is, the function definition should look like:
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llr = function(x, y, z, omega) {

}

Inside, we will need to compute f̂ (zi) for each zi. To do so, we can promise to make a function
that computes the fits at a point zi and apply it to each element of z. If we had such a function,
our local regression function would look like this:

llr = function(x, y, z, omega) {

fits = sapply(z, compute_f_hat, x, y, omega)

return(fits)

}

Easy, right?

We should also be writing tests for the functions we create. At this point, one of the few things
we know about the output of llr is that it should be the same length as z. In the test file, there
is a test for that situation.

Second-level function

In our definition of llr, we have used a function called compute_f_hat, that we need to define
now. Its arguments are z, x, y, and omega, in that order (why? think about how sapply works),
and so the function definition will look like:

compute_f_hat = function(z, x, y, omega) {

Wz = make_weight_matrix(z, x, omega)

X = make_predictor_matrix(x)

f_hat = c(1, z) %*% solve(t(X) %*% Wz %*% X) %*% t(X) %*% Wz %*% y

return(f_hat)

}

The third line above is simply the formula given above for the fit from the weighted regres-
sion (solve means matrix inverse). We’re still not quite done: we need to create the functions
make_weight_matrix and make_predictor_matrix.

Third-level functions

Make a file called llr_functions.R, and copy over our definitions of llr and compute_f_hat.

Add tests to the test_lab_4.R file for the make_weight_matrix and make_predictor_matrix func-
tions.

Add your own implementations of make_weight_matrix and make_predictor_matrix, and then
run testthat::test_dir(".") to see if they work correctly.

Try it out

See if it works on some data.

One possibility is the french_fries data: you could try
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data(french_fries)

french_fries = french_fries[complete.cases(french_fries),]

z = seq(0, 15, length.out = 100)

fits = llr(z = z, x = french_fries$potato, y = french_fries$buttery, omega = 2)

plot(z, fits)

Try different values of omega. What happens to the fits?
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